Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : ChIP-seq

Related people (4)

Kenzo-Hugo HILLION

Group : WINTER - Hub Core

After a Master degree in Genetics at Magistère Européen de Génétique, Paris Diderot, I did a second Master in bioinformatics at University of Nantes where I focused my work on the study of mapping strategy for allele specific analysis at the bioinformatics platform of Institut Curie. I then joined Institut Pasteur to work on an ELIXIR project related to the registry through the development of a dedicated tool and the participation of several workshops and hackathons. As an engineer of the bioinformatics and Biostatistics Hub, I am involved in several projects from Differential Analysis of RNA-seq data to Metagenomics. I am also in charge of the maintenance of the Galaxy Pasteur instance.

ChIP-seqEpigenomicsGenomicsSequence analysisProgram developmentDatabases and ontologiesSofware development and engineeringGeneticsData integrationRead mappingWorkflow and pipeline developmentConfocal Microscopy

Projects (4)


Group : PLATEFORM - Detached : Biomarker Discovery

Bernd Jagla received his PhD in bioinformatics (department of Biology, Chemistry, and Parmacy) from the Free University in Berlin, Germany in 1999. Before joining the Institut Pasteur, he worked for almost ten years in New York City, including as an associate research scientist in the Joint Centers for System Biology (Columbia University) and at the Columbia University Screening Center led by Dr J.E. Rothman. He joined the Institut Pasteur in 2009 to take charge of the bioinformatic needs at the Transcriptome et Epigenome platform, focusing on Next Generation Sequencing. As of 2016 he is member of the C3BI – HUB Team detached to the Human immunology center (CIH) and provides support for cytometry, next generation sequencing, and microarray data analysis. His areas of interest include the quality assurance and data analysis and visualization at the facility. He also has strong expertise in developing algorithms for function prediction from sequence data, image analysis, analysis of mass spectrometry data, workflow management systems. While at Pasteur he developed: KNIME extensions for Next Generation Sequencing (Link) Post Alignment Visualization and Characterization of High-Throughput Sequencing Experiments (Link) Post Alignment statistics of Illumina reads (Link)

AlgorithmicsChIP-seqData managementData VisualizationImage analysisMachine learningSequence analysisDatabaseGenome analysisBiostatisticsProgram developmentScientific computingData and text miningIllumina HiSeqGraphics and Image ProcessingIllumina MiSeqHigh Throughput ScreeningFlow cytometry/cell sortingPac Bio

Projects (2)


Group : GORE - Hub Core

Rachel Legendre is a bioinformatics engineer. She completed her master degree in apprenticeship for two years at INRA in Jouy-en-Josas in the Genetic Animal department. She was involved in a project aiming at the detection and the expression analysis of micro-RNA involved in an equine disease. In 2012, she joined the Genomic, Structure and Translation Team at Paris-Sud (Paris XI) university. She worked principally on Ribosome Profiling data analysis, a new technique that allows to identify the position of the ribosome on the mRNA at the nucleotide level. Since november 2015, she worked at Institut Pasteur. During 4 years, she was detached to the Biomics Platform, where she was in charge of the bioinformatics analyses for transcriptomics and epigenomics projects. She was also involved in Long Reads (PacBio and Nanopore) developments with other bioinformaticians of Biomics. Since november 2019, she has joined the Hub of Bioinformatics and Biostatistics, et more precisely the Genome Organization Regulation and Expression group.

AlgorithmicsChIP-seqEpigenomicsNon coding RNATranscriptomicsGenome analysisProgram developmentScientific computingSofware development and engineeringIllumina HiSeqRead mappingSequencingWorkflow and pipeline developmentChromatin accessibility assaysPac BioRibosome profiling
BacteriaFungiParasiteHumanInsect or arthropodOther animal
Projects (25)


Group : DETACHED - Detached : Labex milieu intérieur

After graduating from Paris VI University with a PhD in Genetics on the “Role of histone protein post-translational modifications in splicing regulation” that I performed in the Epigenetic Regulation unit at the Institut Pasteur, I carried out two post-doctoral experiences. I first worked for three years as a postdoctoral associate of the Whitehead Institute for Biomedical Research/MIT in Cambridge (USA). My main project consisted in the integration of genomic and epigenomic data in order to predict the transcription factors that are potentially at the core of the regulation of the cell-type specific gene expression programs. I then joined the Institut Curie where I deepened my experience in multi-omics data analyses and integration to identify non-coding RNAs involved in cancer progression. I have recently joined the HUB-C3BI of the Institut Pasteur where I am performing high-throughput data integration to better understand biological complexity and contribute to precision medicine development.

ATAC-seqChIP-seqEpigenomicsNon coding RNAPathway AnalysisRNA-seqSingle CellSystems BiologyTool DevelopmentTranscriptomicsData integrationGraph theory and analysisCell biology and developmental biology
Projects (1)

Related projects (15)

Mise a disposition d'un(e) bioinformaticien(ne) du hub pour les analyses bioinformatiques du transcriptome et de l epigenome

La PF Transcriptome et Epigenome développe des projets de séquençage à haut débit (collaboration et service) avec des équipes du Campus. Ceux-ci couvrent l'ensemble des thématiques du campus ainsi qu'une large gamme d'organismes (des virus aux mammifères). La plate-forme exerce des activités de biologie humide (construction des librairies et séquençage) et de biologie sèche (analyse bioinformatiques et statistiques). La personne mise a disposition interagira étroitement avec les autres bioinformaticiens du pôle BioMics et du Hub. Ses activités concerneront notamment: - La participation à la conception et à la mise en place des projets avec les équipes demandeuses, la prise en charge des analyses et le reporting aux utilisateurs - La mise en place d'un workflow d'analyse bioinformatique des données de transcriptome /épigénome en étroite collaboration avec le C3BI, la DSI et les autres bioinformaticiens du pole. Ce workflow permettra le contrôle qualité des données, leur prétraitement, le mapping des séquences sur les génomes/transcriptomes de réference, et le comptage des reads pour les différents éléments de l'annotation - L'adaptation du workflow d'analyse aux questions biologiques et aux organismes étudiés dans le cadre des activités de la PF - L'activité de veille technologique et bibliographique (test et validation de nouveaux outils d'analyse, updates d'outils existants...) - La mise en place et le développement d'outils d'analyse adaptés aux futurs projets de la PF: single cell RNAseq, métatranscriptome, ChIPseq, analyse des isoformes de splicing.. Ceci se fera notamment via la réalisation d'analyses dédiées avec certains utilisateurs. Les outils mis en place et validés dans ce cadre seront ensuite utilisés pour l'ensemble des projets. - L'activité de communication et de formation (participation aux réunions du consortium France Génomique,formation permanente à l' Institut Pasteur… - la participation a d autres projets du Pole BioMics (selon disponibilité) Bernd Jagla, qui était le bioinformaticien de la plateforme a rejoint le Hub au 1er janvier 2016. Rachel Legendre est mise a disposition depuis le 2 novembre 2015 et remplace Bernd Jagla. Je souhaite que Rachel Legendre soit mise à disposition de la plateforme pour une durée d'au moins 2 ans.

Project status : Closed

Identification of Ago2-bound nuclear transcripts and genomic loci in adult zebrafish neural stem cells

Adult neurogenesis is the process by which adult neural stem cells (NSCs) produce new neuronal and glial cells throughout an animal life. Studies in vertebrates have unveiled the crucial importance of this phenomenon for neural tissue homeostasis and proper brain function. Fundamentally, this process is a balance between maintaining a quiescent NSC pool and recruiting them into the neurogenesis cascade. Using the adult zebrafish anterior brain (telencephalon) as a model, we aim at deciphering the molecular mechanisms governing this balance. We identified a microRNA, miR-9, as a prominent quiescence enforcer. Unexpectedly, miR-9 concentrates into the nucleus of quiescent adult NSCs, together with Argonaute proteins (notably Ago2), effector proteins of microRNAs. This nuclear enrichment of Ago/miR-9 is not observed in embryonic or juvenile fish, being thus a signature of deep adult NSC quiescence. It is also observed in mouse NSCs. We wish to use nuclear miR-9/Ago2 as molecular entry points into the molecular mechanisms controlling this adult-specific deep NSC quiescence state. Within this frame, the present project aims to identify Ago2-bound nuclear targets. Through fractionation experiments, we could detect Ago proteins both in the nuclear soluble and in the chromatin-associated fractions of adult zebrafish NSCs. Thus, we built genetic tools to recover the nuclear Ago2-bound transcripts and genomic loci, ie. using CLIP-seq and DamID approaches, respectively. The enriched transcript sequences will be screened for potential miRNA-binding motifs. Putative genomic targets will be screened, in addition, for specific motifs and for their coincidence with defined functional regions (eg. coding or regulatory). The data will be cross-matched with the transcriptome and proteome of miR-9-positive versus –negative adult NSCs. Together, these data should help elaborate hypotheses on the molecular mode(s) of action of nuclear miR-9/AgAgo2 when controlling adult NSC quiescence.

Project status : Closed

ChIP-seq analysis of the majour regulator of GBS virulence

Streptococcus agalactiae (GBS) is a gram positive-bacteria which asymptomatically colonize the genital and intestinal tract of healthy women, although the leading cause of bacterial invasive infections in newborns in developed countries. The ability of GBS to succeed both as a commensal and a pathogen can be linked to its capacity to efficiently colonize the host, while still retaining its toxic capacities for the invasive phase of the infectious process. This highly dynamic regulation relies on the major regulator of virulence gene expression, the two-component system CovSR (Control of Virulence Sensor and Regulator). The transcription of almost 15% of the genome is dependent on CovR but up to now only three genes or operons have been identified as directly CovR-regulated by a DNAse I footprint low throughput approach. To characterize the genome-wide CovR binding site, we performed chromatin immunoprecipitation and sequencing (ChIP-Seq) with an epitope-tagged and functional form of CovR expressed in a ∆covR mutant. Quantitative PCR on ChIP samples (ChIP-qPCR) revealed an enrichment of binding regions on the promoters of known target genes. Sequencing of enriched regions has been done to characterize the landscape of CovR binding sites along the chromosome and to reveal the mechanism of regulation and the function of genes directly regulated by CovR. Since CovR phosphorylation state has an important role on DNA binding affinity, defined levels of CovR expression and phosphorylation will be tested to point out low and high affinity targets and the study of different GBS genetic backgrounds will help us elucidate strain-specificities associated with bacterial meningitides in neonates.

Project status : Closed

Training project for bacterial ChIP-seq Analysis on Streptococcus agalactiae

Streptococcus agalactiae (GBS) is a commensal gram-positive bacteria which asymptomatically colonize the genital and intestinal tract of healthy women. However, GBS is the leading cause of bacterial invasive infections in newborns in developed countries. The ability of GBS to succeed both as a commensal and a pathogen relies on a highly dynamic regulation of colonization and virulence related genes. The major regulator identified to date is the two-component system CovSR (Control of Virulence Sensor and Regulator). The transcription of almost 15% of the genome is dependent on CovR, but the genes directly regulated by CovR and the regulation of CovR-DNA binding by CovR-phosphorylation are ill-defined. To characterize the genome-wide CovR binding sites, we performed chromatin immunoprecipitation and sequencing (ChIP-Seq). Technically, we developed an epitope-tagged and functional form of CovR expressed under an inducible promoter. Quantitative PCR on ChIP samples (ChIP-qPCR) and small-scale footprint experiments revealed an enrichment of binding regions on specific promoters whose transcription are CovR-dependent. Sequencing (ChIP-seq) has been done to 1) characterize the landscape of CovR binding sites along the chromosome and to reveal the function of genes directly regulated by CovR; 2) to decipher the mechanism of regulation by performing the same experiment in strains with different level of CovR phosphorylation; and 3) to unravel an evolutionary strategy of genetic rewiring leading to the emergence of hypervirulent GBS strain by comparing the CovR direct regulon and the evolution of promoter sequences in different clinical stains.

Project status : Closed

Identification d’une mémoire épigénomique à Streptococcus pneumoniae

Les modifications de la chromatine, au niveau de l’ADN ou des histones, jouent un rôle fondamental dans la régulation de l’expression des gènes chez les eucaryotes, en contrôlant l’accès de la machinerie transcriptionnelle aux séquences promotrices. Des études récentes ont mis en évidence que modifier la chromatine est l’un des moyens par lesquels les bactéries pathogènes interfèrent avec le programme transcriptionnel des cellules hôtes. Cependant, les mécanismes moléculaires sous-jacents sont très peu caractérisés. Ainsi que les rôles de ces modifications pour l’hôte ou pour la bactérie et l'impact à long terme des changements induits chez l’hôte restent mal définis. Les colonisateurs naturels ou les bactéries commensales n'ont pas été étudiés pour leur capacité à modifier les histones de l’hôte. Dans notre projet, nous utilisons le model bactérien, Streptococcus pneumoniae, pour nous focaliser sur les modifications d’histones importantes pour un colonisateur naturel de l’épithélium respiratoire et un pathogène opportuniste redoutable, dans le but de caractériser précisément les modifications des histones qui persistent après la colonisation afin d’évaluer la réponse de la mémoire. Nos résultats préliminaires montrent que cette bactérie induit bien des modifications d’histones qui sont conservés à long terme. Pour identifier les gènes affectés par ces modifications d’histones observées et comprendre leurs roles, nous voulons réaliser du ChIPseq.

Project status : Awaiting Publication

Role of the histone demethylase Kdm6b in ILC2 maturation and functional activation

Project status : Pending