Expertise

Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Database

Related people (19)

Christophe BÉCAVIN

Group : GORE - Hub Core

CV Senior Bioinformatician August 2015 – Present : Institut Pasteur, Paris PostDoc fellow 2011 – 2015 : Pascale Cossart’s laboratory, Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris Phd fellow 2007 – 2010 : Institut des Hautes Etudes Scientifiques, ann Ecole Normale Supérieure, Paris Magister of Science, Theoretical Physics 2003 – 2007 : Dynamical systems and statistics of complex matter, Université Paris 7 and Université Paris 6


Keywords
BiophysicsMachine learningModelingProteomicsBiostatisticsDatabases and ontologiesHost-pathogen interactions
Organisms
ListeriaLeishmania
Projects (12)

Thomas COKELAER

Group : PLATEFORM - Detached : Biomics

I joined the Bioinformatics and Biostatistics Hub at Institut Pasteur in 2016 where I am currently developing pipelines related to NGS for the Biomics Pôle. I have an interdisciplinary research experience: after a PhD in Astronomy (gravitational wave data analysis), I joined several research institute to work in the fields of plant modelling (INRIA, Montpellier, 2008-2011), System Biology — in particular logical modelling (EMBL-EBI Cambridge, U.K., 2011-2015), and drug discovery (Sanger Institute, Cambridge, U.K.), 2015). On a daily basis, I use data analysis and machine learning techniques within high-quality software to tackle scientific problems.


Keywords
AlgorithmicsData managementData VisualizationGenome assemblyGenomicsMachine learningModelingScientific computingDatabases and ontologiesSofware development and engineeringData and text miningIllumina HiSeqGraph theory and analysisIllumina MiSeq
Organisms

Projects (2)

Olivia DOPPELT-AZEROUAL

Group : WINTER - Hub Core

ONGOING PROJECTS Galaxy administration/Maintenance (https://galaxy.web.pasteur.fr) Bioweb: Future directory of bioinformatics resources at the Institut Pasteur ELIXIR Registry SKILLS Galaxy: administration, API/Bioblend expertise Programming: Python, Javascript, Lua, R, Development tools: GIT, Subversion, Emacs Database: NoSQL (couchdb), MySQL, PostgreSQL Bioinformatics: Preprocessing NGS data, MED-SuMo, Protein surface comparison, Protein functional annotation. OTHER ACTIVITIES C3BI seminars and meetings management Involved in Galaxy France Working Group (IFB) FORMER PROJECTS MetaGenSense(https://metagensense.web.pasteur.fr) Disco-Bac (https://disco-bac.web.pasteur.fr)


Keywords
Data managementSequence analysisStructural bioinformaticsDatabaseProgram developmentScientific computingLIMS
Organisms

Projects (5)

Amine GHOZLANE

Group : SINGLE - Hub Core

After a PhD in informatics on graph analysis (metabolic networks and sRNA-mRNA interaction graphs) at the LaBRI (Université de Bordeaux), I joined the DSIMB team (INTS) for a post-doc on structural modeling. Then, I performed a second post-doc at Metagenopolis – INRA Jouy-en-Josas, where I was initiated to the analysis of metagenomic data. I was recruited at the HUB in 2015, and since I pursue the development of methods dedicated to the treatment of metagenomic data by combining either the treatment of sequencing data, the statistics, the protein structural modeling and the graph analysis.


Keywords
AlgorithmicsClusteringGenome assemblyGenomicsMetabolomicsModelingNon coding RNASequence analysisStructural bioinformaticsTargeted metagenomicsDatabaseGenome analysisBiostatisticsProgram developmentScientific computingDatabases and ontologiesExploratory data analysisData and text miningIllumina HiSeqComparative metagenomicsRead mappingIllumina MiSeqSequence homology analysisGene predictionMultidimensional data analysisSequencingShotgun metagenomics
Organisms

Projects (28)

Kenzo-Hugo HILLION

Group : WINTER - Hub Core

After a Master degree in Genetics at Magistère Européen de Génétique, Paris Diderot, I did a second Master in bioinformatics at University of Nantes where I focused my work on the study of mapping strategy for allele specific analysis at the bioinformatics platform of Institut Curie. I then joined Institut Pasteur to work on an ELIXIR project related to the bio.tools registry through the development of a dedicated tool and the participation of several workshops and hackathons. As an engineer of the bioinformatics and Biostatistics Hub, I am involved in several projects from Differential Analysis of RNA-seq data to Metagenomics. I am also in charge of the maintenance of the Galaxy Pasteur instance.


Keywords
ChIP-seqEpigenomicsGenomicsSequence analysisProgram developmentDatabases and ontologiesSofware development and engineeringGeneticsData integrationRead mappingWorkflow and pipeline developmentConfocal Microscopy
Organisms

Projects (4)

Bernd JAGLA

Group : PLATEFORM - Detached : Biomarker Discovery

Bernd Jagla received his PhD in bioinformatics (department of Biology, Chemistry, and Parmacy) from the Free University in Berlin, Germany in 1999. Before joining the Institut Pasteur, he worked for almost ten years in New York City, including as an associate research scientist in the Joint Centers for System Biology (Columbia University) and at the Columbia University Screening Center led by Dr J.E. Rothman. He joined the Institut Pasteur in 2009 to take charge of the bioinformatic needs at the Transcriptome et Epigenome platform, focusing on Next Generation Sequencing. As of 2016 he is member of the C3BI – HUB Team detached to the Human immunology center (CIH) and provides support for cytometry, next generation sequencing, and microarray data analysis. His areas of interest include the quality assurance and data analysis and visualization at the facility. He also has strong expertise in developing algorithms for function prediction from sequence data, image analysis, analysis of mass spectrometry data, workflow management systems. While at Pasteur he developed: KNIME extensions for Next Generation Sequencing (Link) Post Alignment Visualization and Characterization of High-Throughput Sequencing Experiments (Link) Post Alignment statistics of Illumina reads (Link)


Keywords
AlgorithmicsChIP-seqData managementData VisualizationImage analysisMachine learningSequence analysisDatabaseGenome analysisBiostatisticsProgram developmentScientific computingData and text miningIllumina HiSeqGraphics and Image ProcessingIllumina MiSeqHigh Throughput ScreeningFlow cytometry/cell sortingPac Bio
Organisms

Projects (2)

Pierre LECHAT

Group : ALPS - Hub Core

I have been involved in genomic projects for prokaryotic and human genetic studies (GWAS) since 1998. Currently, I am working on novel visualization techniques to explore large and highly complex data sets. I have develop a web based graphical user interface, called SynTView (http://genopole.pasteur.fr/SynTView/) to visualize biological features in comparative genomic studies. The tool allows interactive visualization of microbial genomes to investigate massive amounts of information efficiently. The software is characterized by the presentation of synthetic organisations of microbial genomes and the visualization of polymorphism data. I am extending this work into designing novel dynamic views for comparative analysis of viruses in emerging disease.


Keywords
Data VisualizationDatabaseSofware development and engineeringComparative metagenomicsOrthology and paralogy analysis
Organisms

Projects (27)

Frédéric LEMOINE

Group : DETACHED - Hub Core

After a Master degree in bioinformatics and biostatistics, I did a PhD in computer science / bioinformatics at University Paris-Sud (now in University Paris-Saclay), where I worked on integration and analysis of comparative genomics data. After a postdoc in Lausanne, Switzerland where I worked on small-RNA sequencing data, I joined GenoSplice where I was responsible for the development of bioinformatics projects related to next generation sequencing. I joined Institut Pasteur in Nov. 2015, to work in the Evolutionary Bioinformatics Unit and participate in the development of new tools and algorithms that are able to tackle efficiently the ever increasing amount of sequencing data.


Keywords
AlgorithmicsData managementPhylogeneticsSequence analysisDatabaseGenome analysisProgram developmentScientific computingDatabases and ontologiesSequencingWorkflow and pipeline development
Organisms

Projects (1)

Nicolas MAILLET

Group : SINGLE - Embedded : Structural Virology

After a PhD in bioinformatics at Inria/IRISA, Université de Rennes 1, Rennes (France), under the supervision of Dominique Lavenier and Pierre Peterlongo, I did a postdoc in bioinformatics at Laboratory of Ecology and Evolution of Plankton in Stazione Zoologica Anton Dohrn of Naples, Italy. Both my thesis and my postdoc were about the Tara Oceans projet and the development of new software to analyze huge quantities of raw reads coming from metagenomics sample. I am currently occupying a research engineer position at the Hub as leader of ALPS group and focus on several different computing problems including metagenomics, protein assembly and several short term developments.


Keywords
AlgorithmicsData managementProteomicsDatabaseProgram developmentScientific computingSofware development and engineeringComparative metagenomics
Organisms

Projects (8)

Christophe MALABAT

Group : HEAD - Hub Core

After a PhD in biochemistry of the rapeseed proteins, during which I developed my first automated scripts for handling data processing and analysis, I join Danone research facility center for developing multivariate models for the prediction of milk protein composition using infrared spectrometry.
As I was already developing my own informatics tools, I decided to join the course of informatic for biology of the Institut Pasteur in 2007. At the end of the course I was recruited by the Institute and integrate the unit of “génétique des interactions macromoléculaires” of Alain Jacquier. Within this group, I learn to handle sequencing data and I developed processing and analysis tools using python and R. I also create a genome browser and database system for storing, retrieving and visualizing microarray data. After 8 years within the Alain Jacquier’s lab, I join the Hub of bioinformatics and biostatistics as co-head of the team.


Keywords
ClusteringData managementSequence analysisTranscriptomicsWeb developmentDatabaseGenome analysisProgram developmentScientific computingExploratory data analysisData and text miningIllumina HiSeqRead mappingLIMSIllumina MiSeqHigh Throughput ScreeningMultidimensional data analysisWorkflow and pipeline developmentRibosome profilingMotifs and patterns detection
Organisms

Projects (10)

Fabien MAREUIL

Group : WINTER - Hub Core

After a Master degree in Genome Analysis and Molecular Modeling at Denis Diderot University, I did a PhD in NMR / bioinformatics at Denis Diderot University, where I worked on the development and use of a software named DaDiModO which uses SAXS data and RDC/NMR data to calculate models of structural proteins. After a postdoc aiming to adapt ARIA software to allow execution on computing grid in the Structural Bioinformatic Team at Institut Pasteur in collaboration with IBCP, I joined CIB/DSI Team where I was responsible for the development of bioinformatics projects and the deployment, maintenance and evolution of the Pasteur Galaxy server. I joined the Hub/C3BI team in 2017 as research engineer where I’m involved in several projects such as structural bioinformatics, softwares and web development. I am also in charge of the maintenance of the Galaxy Pasteur instance.


Keywords
Data managementGalaxyStructural bioinformaticsWeb developmentDatabaseProgram developmentScientific computingDatabases and ontologiesWorkflow and pipeline developmentGrid and cloud computing
Organisms
Non applicable
Projects (16)

Damien MORNICO

Group : SysBio - Hub Core

Graduated in “Structural Genomics and Bioinformatics”, I mainly worked during almost 6 years at the Genoscope (CEA) in the LABGeM team, within the microbial annotation platform MicroScope. I specifically focused on functional annotation and microbial metabolic pathways prediction and reconstruction, through pipeline implementation, database modeling and web interface development. Broadly, interactions in the MicroScope platform allowed me to tackle the whole annotation process: from genome assembly and gene prediction to network reconstruction. I also performed several comparative genomics analyses. As a member of the “Hub team”, I now take part to various projects, linked to HTS data, on different subjects (lncRNAs and stem cells, HIV integration and DNA structure, Ribosomal protein genes and genome evolution, Natural Antisense Transcripts in compact genomes…).


Keywords
Data managementGenomicsSequence analysisWeb developmentDatabaseGenome analysisDatabases and ontologiesOrthology and paralogy analysisRead mappingSequence homology analysisGene prediction
Organisms

Projects (19)

Bertrand NÉRON

Group : ALPS - Hub Core

Activities Contact for any subject related to IFB. Help scientists to develop new tools (architecture, design, implementation). animate the Python Working Group at pasteur . O|B|F (http://www.open-bio.org/) member. Skills Strong programming experience in Python. Software architecture and design. NoSQL DataBase (MongoDB, CouchDB) XML/YAML continuous integration (github/travis-CI/readthedocs, gitlab/gitlab-CI) containers (Docker, Singularity) linux (Gentoo, Xubuntu) IFB developer Main projects on the campus Mobyle http://Mobyle.pasteur.fr Mobyle: a new full web bioinformatics framework IntegronFinder (ongoing project) MacsyFinder (ongoing project) githubaccess to my projects on github Teaching Unix (Unix-I , Unix-II) Python . Education 2002 Phd in Molecular and cellular biology. “Rôle de deux protéines QN1 et PATF impliquées dans l’arrêt de prolifération des cellules de la neurorétine aviaire au cours du developpement”. 2001 “Informatique En Biologie” course (Pasteur)


Keywords
Data managementDatabaseProgram developmentScientific computingDatabases and ontologies
Organisms
Non applicable
Projects (12)

Natalia PIETROSEMOLI

Group : SysBio - Hub Core

Dr. Natalia Pietrosemoli is an Engineer with a M. Sc. in Modeling and Simulation of Complex Realities from the International Center for Theoretical Physics, ICTP and the International School of Advanced Studies, SISSA (Triest, Italy). During her M. Sc. internships she mostly worked in modeling, optimization, combinatorics and information theory applied to medical imaging. In 2012 she got a Ph. D in Computational Biology from the School of Bioengineering of Rice University (Houston, TX, US), where she specialized in computational structural biology and functional genomics. Her doctoral thesis “Protein functional features extracted with from primary sequences : a focus on disordered regions”, contributed to a better understanding of the functional and evolutionary role of intrinsic disorder in protein plasticity, complexity and adaptation to stress conditions. As part of her Ph. D., Natalia was a visiting scholar in two labs in Madrid: the Structural Computational Biology Group at the Spanish National Cancer Research Centre (CNIO), where she mainly worked in sequence analysis and the functional-structural relationships of proteins, and the Computational Systems Biology Group at the Spanish National Centre for Biotechnology (CNB-CSIC ), where she studied the functional implications of intrinsically disordered proteins at the genomic level for several organisms, collaborating with different experimental and theoretical groups. In 2013, she joined the Swiss Institute of Bioinformatics as a postdoctoral fellow in the Bioinformactics Core Facility. Her main project consisted in the molecular classification of a rare type of lymphoma, which involved the integration of transcriptomic, clinical and mutational data for the identification of molecular markers for classification, diagnosis and prognosis. This work was performed in collaboration with the Pathology Institute at the University Hospital of Lausanne (CHUV). In November of 2015 Natalia joined the Hub Team @ Pasteur C3BI as a Senior Bioinformatician. Natalia is especially interested in the integrative analysis of different omics data, both at large-scale and for small datasets, and loves collaborating in interdisciplinary environments and having feedback from her fellow experimental colleagues. Currently, she’s coordinating several projects performing functional and pathway analysis at the genomic level. By grouping genes, proteins and other biological molecules into the pathways they are involved in, the complexity of the analyses is significantly reduced, while the explanatory power increases with respect to having a list of differentially expressed genes or proteins.


Keywords
AlgorithmicsData managementGenomicsImage analysisMachine learningModelingProteomicsSequence analysisStructural bioinformaticsTranscriptomicsDatabaseGenome analysisBiostatisticsScientific computingDatabases and ontologiesApplication of mathematics in sciencesData and text miningGeneticsGraphics and Image ProcessingBiosensors and biomarkersClinical researchCell biology and developmental biologyInteractomicsBioimage analysis
Organisms

Projects (32)

Najwa TAIB


Najwa has been a postdoctoral fellow funded by the PTR project OM-Nega of the Institut Pasteur. Since January 2018 she has become the permanent bioinformatician of the group as part of the Hub team C3BI of the Institut Pasteur.


Keywords
GenomicsSequence analysisDatabaseGenome analysisEvolutionOrthology and paralogy analysis
Organisms

Projects (0)

    Rachel TORCHET

    Group : WINTER - Hub Core

    In 2012 I completed my master degree at the MicroScope Platform located at Genoscope (the French National Sequencing Center). I was involved in a project aiming at the management of evolution projects which rely on the Next Generation Sequencing (NGS) technologies to try to decipher the dynamics of genomic changes as well as the molecular bases and the mechanisms underlying adaptative evolution of micro-organisms (Remigi et al. 2014). Since November 2014, I joined the Bioinformatics and Biostatistics HUB at Institut Pasteur. I participated to the creation and updates of the C3BI website. I joined the WINTER group where I’m in charge of web and interface development projects. I have completed an UX-Design training to add extra value to my front-end development skills. I design and develop bioinformatics tools and interfaces that are users oriented.


    Keywords
    Data VisualizationWeb developmentDatabaseGenome analysisScientific computingDatabases and ontologiesSofware development and engineeringWorkflow and pipeline development
    Organisms

    Projects (12)

    Related projects (9)

    The Flemmingsome: the proteome of intact cytokinetic midbodies

    The central part of the intercellular bridge connecting the two daughter cells during cytokinesis is a highly dense structure named the Midbody first described by Flemming in 1891. Work in the past ten years revealed that the midbody is a platform that concentrates essential proteins involved in cytokinetic abscission. After abscission, the midbody is cut on both sides, thus generating a midbody remnant (named MBR). The MBR usually interacts with the cell surface of one of the two daughter cells, before being engulfed in a phagocytic-like manner. We also found that the MBR can be easily released from cells before their engulfment by calcium chelation. Of note, MBRs at the cell surface might act as pro-proliferative, signalling entities but the proteins involved and the mechanisms of MBR anchoring are unknown. A previous proteomic study of the midbody conducted by Skop purified intercellular bridges from cell lysates recovered after cell synchronization, microtubule stabilization and detergent treatment. This pioneer proteomic study, although informative, did not allow the recovery of many key known proteins of the midbody. Here, we set up an experimental protocol to purify intact, detergent-free MBRs in order to have the full proteome of this organelle. Quantitative, label-free proteomics enabled us to identify 529 proteins enriched at least 2 times as compared to whole cell lysates, that we named the “Flemmingsome”. Besides known and well-established proteins of the midbody (MKLP1, MgcRacGAP, AuroraB, INCENP, MKLP2, Rab8, Rab11, Rab35, Citron Kinase, ESCRTs…), we identified new and promising candidates potentially involved in cytokinetic abscission. In addition, we identified 27 transmembrane proteins that are excellent candidates for mediating interactions between the MBR and the receiving daughter cells after cytokinetic abscission. We are also currently exploring whether newly identified candidates could participate in the signalling mediated by the MBRs. We would thus like to create a website that recapitulates the findings of our screen. The proteins discovered represent new candidates for the understanding of cytokinesis and tumorigenesis. This should be instrumental in the field as the previous websites are not updated (Microkits, Uniprot) and do not focus on this particular step of cytokinesis.



    Project status : Closed

    Pasteur MLST: Institut Pasteur genomic taxonomy database of microbial strains

    - The Institut Pasteur genomic taxonomy database of microbial strains (“Pasteur MLST”) is a free, publicly-accessible resource that hosts nucleotide sequence-based definitions of microbial strains, along with information on bacterial isolates (provenance data) and their genomic sequences. The Pasteur MLST database provides universal nomenclatures that are largely adopted for important pathogens (Klebsiella, Listeria, …), and represent a unifying language on strains for microbial population biology. - Unified strain taxonomies facilitate the coordinated international surveillance of bacterial pathogens. Several hundred research laboratories and public health agencies worldwide have deposited novel strain types, sequences and provenance data on their bacterial isolates. - Pasteur MLST is powered by the Open source GPL3 BIGSdb web application developed at Oxford University (Keith Jolley & Martin Maiden). (http://bigsdb.pasteur.fr ). Its evolution in terms of functionality is tightly linked to the developments of the software at Oxford U. Its evolution in terms of contents is managed by dedicated international teams of curators for each bacterial pathogenic species, coordinated by the PasteurMLST team. - The genomic taxonomies hosted at Pasteur MLST represent unique, authoritative resources that are highly valued by the community, as testified by the routine use of Pasteur MLST strain tags (e.g., K. pneumoniae ST258) in the scientific literature. Several labs (National Reference Centers or Units) of Institut Pasteur are coordinating the curation of genomic taxonomies (Klebsiella, Listeria, Corynebacteria, Bordetella, Leptospira, Yersinia, ...). The aim of the project is to obtain support from the C3BI HUB for the maintenance of the BIGSdb instance at Pasteur: deployment, upgrades, installation of API functionality developed by our partner, coping with future IT evolutions, ...



    Project status : In Progress

    Building a database with a pattern mining system designed for virus nucleic acid data

    Because of the increasing biological data generated due to next-generation sequencing of the genetic material of organisms, storing and analyzing these data have become challenging both for molecular biologists and computer scientists. Here, we propose to design a system that attempts to solve this from building a secure repository up to designing algorithms that process sequences to produce biological insights, particularly mining for sequential patterns present in the sequences. Discovering sequence motifs/patterns has been essential to computational biologists as it is helpful in understanding protein function, structure, and evolution. Given the data generated from the project “A Study of Mosquitoes of Makiling Forest Reserve Areas with Characteristic Land Use and Survey of their Arbovirus Diversity through Vector-enabled Virome Sequencing” (funded by the Department of Science and Technology - Philippine Council of Health Research and Development; DOST-PCHRD) of Dr. Bautista, using the assembled contigs or even substantial portion of viruses’ full genome, we can take a look at the dynamics of genetics of viruses over time when analyzed alongside other publicly available sequences. This is a collaborative project between the University of the Philippines and Institut Pasteur in the context of this funded project that includes btoh partners. Our wish is for the Philippines bioinformatics engineer involved seeks guidance of the development their databse that may eventually be housed at Institut Pasteur.



    Project status : Declined

    An online database of RNA-small molecules complexes for rational drug design

    The majority of approved drugs target proteins, which are encoded in a very small fraction of the human genome. When a pathology is associated with so-called undruggable proteins, an alternative strategy should be sought. In the last twenty years, non-coding RNA molecules have been shown to perform a variety of crucial biological functions, including regulating gene expression, protecting chromosomes from foreign nucleic acids, and guiding telomers synthesis. In this context, targeting either mRNA molecules that are translated into undruggable protein targets or biologically relevant non-coding RNA molecules with small molecules is emerging as a promising therapeutical approach in pathologies such as cancer, viral infections, and neurodegenerative disorders. However, the number of approved drugs that target RNA molecules is still very limited and the existing examples have mostly been found by costly and time-consuming screening experiments. In this project, we aim at building a computational framework to guide the rational design of drugs targeting RNA. To this end, we created a database containing all the experimentally-determined structures of RNA-small molecule complexes deposited in the PDB database. The entries containing drug-like compounds were selected and annotated based on the different biological entities interacting with the ligands. Our database, freely accessible via a web interface, will facilitate i) mapping the chemical space of the small molecules known to bind RNA, ii) understanding the nature of the interactions that drive ligand/RNA recognition, and iii) benchmarking existing tools for in silico protein drug design with RNA targets.



    Project status : Closed