Expertise

Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Genomics

Related people (22)

Emna ACHOURI


Emna has joined the C3BI in 2016 and worked actively in the IGDA platform doing research and education. Now, she is also part of the Viral Populations and Pathogenesis Unit (PVP).


Keywords
Genome assemblySequence analysisProgram developmentData integrationRead mappingLIMSParallel computingGene predictionShotgun metagenomics
Organisms

Projects (1)

Pascal CAMPAGNE

Group : SABER - Hub Core

Initially trained in evolutionary and environmental sciences, I studied population genetics and micro-evolutionary processes in a number of postdoctoral research projects. I recently joined the C3BI-Hub at the Institut Pasteur, where I work on various aspects involving Biostatistics and the analysis of genetic data.


Keywords
Association studiesGenomicsGenotypingBiostatisticsGeneticsEvolutionPopulation genetics
Organisms
BacteriaParasiteHumanInsect or arthropodOther animal
Projects (12)

Claudia CHICA


As a computational biologist I have been involved in various projects seeking to answer different biological questions. Those projects have allowed me to define my main research interest, namely the evolutionary study of the emergence, storage and modulation of information in biological systems assisted by computational methods. During my research career I have acquired extensive experience in the analysis of sequence data at the DNA and protein level. I’m trained both in NGS bioinformatic protocols (ChIP-seq, ATAC-seq, RNA-seq, genome assembly) and fine detail sequence analysis. Most importantly, I have gained proficiency in the use of the statistical models that are at the basis of the quantitative analysis of low and high throughput sequence data. Additionally, my experience as a lecturer and instructor has taught me that training researchers about the formal basis of bioinformatic methodologies is the key for a successful collaboration between wet and dry lab. Likewise, I have gained valuable skills by working within two international consortia (TARA Oceans project and TRANSNET): the ability to collaborate with multidisciplinary groups and to coordinate younger researchers.


Keywords
AlgorithmicsGenomicsSequence analysisTranscriptomicsGenome analysisGeneticsEvolutionInteractomics
Organisms

Projects (17)

Freddy CLIQUET


One of my projects consists in developing GRAVITY, a java tool based on Cytoscape to integrate genetic variants within protein-protein interaction networks to allow the visual and statistical interpretation of next-generation sequencing data, ultimately helping geneticists and clinicians to identify causal variants and better diagnose their patients. I’m also involved in several other projects in the lab, taking part in the design of pipelines for the processing and the analysis of genomics data, including SNP arrays, whole-exome and whole-genome sequencing data. This means being confronted to the big data problematic, the unit having to manage hundreds of terabytes of genomics data. Finally, I am now analysing these data in order to identify possible causes for autism, to help clinicians with their diagnosis but also to better understand the biological mechanisms at play in this complex disease. This is done through the project aiming at understanding the genetic architecture of autism in the Faroe Islands, and also with the newly starting IMI2 European project AIMS2-Trials.


Keywords
AlgorithmicsData managementData VisualizationGenomicsMachine learningProteomicsGenome analysisBiostatisticsProgram developmentScientific computingApplication of mathematics in sciencesExploratory data analysisSofware development and engineeringData and text miningGenetics
Organisms

Projects (0)

    Thomas COKELAER

    Group : DETACHED - Detached : Biomics

    I joined the Bioinformatics and Biostatistics Hub at Institut Pasteur in 2016 where I am currently developing pipelines related to NGS for the Biomics Pôle. I have an interdisciplinary research experience: after a PhD in Astronomy (gravitational wave data analysis), I joined several research institute to work in the fields of plant modelling (INRIA, Montpellier, 2008-2011), System Biology — in particular logical modelling (EMBL-EBI Cambridge, U.K., 2011-2015), and drug discovery (Sanger Institute, Cambridge, U.K.), 2015). On a daily basis, I use data analysis and machine learning techniques within high-quality software to tackle scientific problems.


    Keywords
    AlgorithmicsData managementData VisualizationGenome assemblyGenomicsMachine learningModelingScientific computingDatabases and ontologiesSofware development and engineeringData and text miningIllumina HiSeqGraph theory and analysisIllumina MiSeq
    Organisms

    Projects (2)

    Alexis CRISCUOLO

    Group : GIPHY - Embedded : PIßnet

    | work as a research engineer in the ßioinƒormatics and ßiostatistics HUß of the |nstitut Pasteur. Holder of a PhD in bioinƒormatics, my main interest is on ƒast but robust phylogenetic inƒerence algorithms and methods ƒrom large genome-scaled datasets. |n consequence, | am oƒten involved in related bioinƒormatics projects, such as perƒorming de novo or ab initio genome assemblies, designing and processing core genome †yping schemes, building and analysing phylogenomics datasets, or implementing and distributing novel tools and methods.


    Keywords
    AlgorithmicsClusteringGenome assemblyGenomicsGenotypingPhylogeneticsTaxonomyGenome analysisProgram developmentEvolutionSequence homology analysis
    Organisms

    Projects (19)

    Stéphane DESCORPS-DECLÈRE

    Group : FUNGEN - Hub Core

    Professional Experience Today – Institut Pasteur – HUB Team 2009 – today – Institut Pasteur – Bioinformatician 2006 – 2009 – CNRS, Orsay – Institut Génétique et Microbiologie – PostDoc 2002 – 2006 – INRIA, Grenoble – Ph.D 2000 – 2002 – INRIA, Action Helix, Grenoble – Expert engineer 1999 – 2000 – Infobiogen – Université EVE, Evry – Engineer Education 2002 – 2006 Thesis Paris VI, INRIA, Grenoble. 1999 – 2000 DESS Informatique Appliquée à la Biologie, UPMC 1997 – 1998 Maîtrise Biologie cellulaire et Physiologie animale, UPMC


    Keywords
    GenomicsSequence analysis
    Organisms

    Projects (6)

    Amine GHOZLANE

    Group : PLATEFORM - Detached : Biomics

    After a PhD in informatics on graph analysis (metabolic networks and sRNA-mRNA interaction graphs) at the LaBRI (Université de Bordeaux), I joined the DSIMB team (INTS) for a post-doc on structural modeling. Then, I performed a second post-doc at Metagenopolis – INRA Jouy-en-Josas, where I was initiated to the analysis of metagenomic data. I was recruited at the HUB in 2015, and since I pursue the development of methods dedicated to the treatment of metagenomic data by combining either the treatment of sequencing data, the statistics, the protein structural modeling and the graph analysis.


    Keywords
    AlgorithmicsClusteringGenome assemblyGenomicsMetabolomicsModelingNon coding RNASequence analysisStructural bioinformaticsTargeted metagenomicsDatabaseGenome analysisBiostatisticsProgram developmentScientific computingDatabases and ontologiesExploratory data analysisData and text miningIllumina HiSeqComparative metagenomicsRead mappingIllumina MiSeqSequence homology analysisGene predictionMultidimensional data analysisSequencingShotgun metagenomics
    Organisms

    Projects (19)

    Julien GUGLIELMINI


    After a PhD in Microbiology on bacterial toxin-antitoxin systems at the Free University of Brussels, I joined the Institut Pasteur for a 3 years postdoc in Eduardo Rocha’s lab. During this period, I performed comparative genomics and pylogenetic analysis on bacterial conjugation and type IV secretion systems. Then, I worked 2 years in Olivier Tenaillon’s team on the modelling and evolution of organismal complexity. I joined the HUB in 2015, and I am involved in phylogenetic and comparative genomics projects.


    Keywords
    GenomicsPhylogeneticsSequence analysisGenome analysisGeneticsEvolutionPopulation genetics
    Organisms
    ArchaeaBacteriaVirus
    Projects (10)

    Kenzo-Hugo HILLION

    Group : WINTER - Hub Core

    After a Master degree in Genetics at Magistère Européen de Génétique, Paris Diderot, I did a second Master in bioinformatics at University of Nantes where I focused my work on the study of mapping strategy for allele specific analysis at the bioinformatics platform of Institut Curie. I then joined Institut Pasteur to work on an ELIXIR project related to the bio.tools registry through the development of a dedicated tool and the participation of several workshops and hackathons. As an engineer of the bioinformatics and Biostatistics Hub, I am involved in several projects from Differential Analysis of RNA-seq data to Metagenomics. I am also in charge of the maintenance of the Galaxy Pasteur instance.


    Keywords
    ChIP-seqEpigenomicsGenomicsSequence analysisProgram developmentDatabases and ontologiesSofware development and engineeringGeneticsData integrationRead mappingWorkflow and pipeline developmentConfocal Microscopy
    Organisms

    Projects (4)

    Hanna JULIENNE

    Group : DETACHED - Detached : Statistical Genetics

    I am seeking to apply my knowledge in computer science and statistics to understand real world data. I have interdisciplinary background spanning complex systems, Big Data, machine learning, biostatistics and genomics. I have completed a PhD in which I applied clustering and PCA to epigenomics data and discovered new insights on the coupling between replication and epigenetics. I worked at Dataiku, a dynamic start up in which I was actively engaged to help their clients to build their Big Data strategy and draw value from their data. I studied the human microbiota during two years at MetaGenoPolis (MGP), an innovative research center. We aim at improving human health by developing strategies (eg. nutritional, therapeutical, preventive…) to restore dysbiosed microbiota with our industrial and academical partners. I currently work in the statistical genetics group at the Pasteur Institut where I apply my software development and data science skills to quantify the impact of the human genome variation on diverse health parameters.


    Keywords
    ClusteringData managementGenomicsGenome analysisExploratory data analysisGeneticsComparative metagenomicsDimensional reductionMultidimensional data analysis
    Organisms

    Projects (2)

    Pierre LECHAT

    Group : ALPS - Hub Core

    I have been involved in genomic projects for prokaryotic and human genetic studies (GWAS) since 1998. Currently, I am working on novel visualization techniques to explore large and highly complex data sets. I have develop a web based graphical user interface, called SynTView (http://genopole.pasteur.fr/SynTView/) to visualize biological features in comparative genomic studies. The tool allows interactive visualization of microbial genomes to investigate massive amounts of information efficiently. The software is characterized by the presentation of synthetic organisations of microbial genomes and the visualization of polymorphism data. I am extending this work into designing novel dynamic views for comparative analysis of viruses in emerging disease.


    Keywords
    Data VisualizationDatabaseSofware development and engineeringComparative metagenomicsOrthology and paralogy analysis
    Organisms

    Projects (20)

    Rachel LEGENDRE

    Group : PLATEFORM - Detached : Biomics

    Rachel Legendre is a bioinformatics engineer. She completed her master degree in apprenticeship for two years at INRA in Jouy-en-Josas in the Genetic Animal department. She was involved in a project aiming at the detection and the expression analysis of micro-RNA involved in an equine disease. In 2012, she joined the Genomic, Structure and Translation Team at Paris-Sud (Paris XI) university. She worked principally on Ribosome Profiling data analysis, a new technique that allows to identify the position of the ribosome on the mRNA at the nucleotide level. Since November 2015, she joined the Bioinformatics and Biostatistics HUB at Pasteur Institute and she’s detached to the Biomics Pole in C2RT, where she is in charge of the bioinformatics analyses for transcriptomics and epigenomics projects. She’s also involved in Long Reads (PacBio and Nanopore) developments with other bioinformaticians of Biomics Pole.


    Keywords
    AlgorithmicsChIP-seqEpigenomicsNon coding RNATranscriptomicsGenome analysisProgram developmentScientific computingSofware development and engineeringIllumina HiSeqRead mappingSequencingWorkflow and pipeline developmentChromatin accessibility assaysPac BioRibosome profiling
    Organisms
    BacteriaFungiParasiteHumanInsect or arthropodOther animal
    Projects (9)

    Blaise LI


    I obtained a PhD in phylogeny in 2008 at the Muséum National d’Histoire Naturelle in Paris, then worked as a post-doc in Torino (Italy, 2009 – 2011) and Faro (Portugal, 2011 – 2013) where I worked on methodological aspects of phylogeny. In 2013, I have been hired as research engineer in bioinformatics at the Institut de Génétique Humaine in Montpellier where I wrote tools to analyse high-throughput sequencing data, especially small RNA-seq. This is also the kind of job I do now at Institut Pasteur, since 2016. I enjoy programming in python, I’m interested in evolutionary biology, and I find teaching the UNIX command-line a rewarding activity. My published work is available here: http://www.normalesup.org/~bli/useful.html


    Keywords
    GenomicsNon coding RNATranscriptomicsSofware development and engineeringGeneticsWorkflow and pipeline development
    Organisms
    Insect or arthropodOther animalDrosophila melanogaster (Fruit fly)C. elegans
    Projects (4)

    Nicolas MAILLET

    Group : ALPS - Embedded : Structural Virology

    After a PhD in bioinformatics at Inria/IRISA, Université de Rennes 1, Rennes (France), under the supervision of Dominique Lavenier and Pierre Peterlongo, I did a postdoc in bioinformatics at Laboratory of Ecology and Evolution of Plankton in Stazione Zoologica Anton Dohrn of Naples, Italy. Both my thesis and my postdoc were about the Tara Oceans projet and the development of new software to analyze huge quantities of raw reads coming from metagenomics sample. I am currently occupying a research engineer position at the Hub as leader of ALPS group and focus on several different computing problems including metagenomics, protein assembly and several short term developments.


    Keywords
    AlgorithmicsData managementProteomicsDatabaseProgram developmentScientific computingSofware development and engineeringComparative metagenomics
    Organisms

    Projects (8)

    Damien MORNICO

    Group : FUNGEN - Hub Core

    Graduated in “Structural Genomics and Bioinformatics”, I mainly worked during almost 6 years at the Genoscope (CEA) in the LABGeM team, within the microbial annotation platform MicroScope. I specifically focused on functional annotation and microbial metabolic pathways prediction and reconstruction, through pipeline implementation, database modeling and web interface development. Broadly, interactions in the MicroScope platform allowed me to tackle the whole annotation process: from genome assembly and gene prediction to network reconstruction. I also performed several comparative genomics analyses. As a member of the “Hub team”, I now take part to various projects, linked to HTS data, on different subjects (lncRNAs and stem cells, HIV integration and DNA structure, Ribosomal protein genes and genome evolution, Natural Antisense Transcripts in compact genomes…).


    Keywords
    Data managementGenomicsSequence analysisWeb developmentDatabaseGenome analysisDatabases and ontologiesOrthology and paralogy analysisRead mappingSequence homology analysisGene prediction
    Organisms

    Projects (14)

    Natalia PIETROSEMOLI

    Group : FUNGEN - Hub Core

    Dr. Natalia Pietrosemoli is an Engineer with a M. Sc. in Modeling and Simulation of Complex Realities from the International Center for Theoretical Physics, ICTP and the International School of Advanced Studies, SISSA (Triest, Italy). During her M. Sc. internships she mostly worked in modeling, optimization, combinatorics and information theory applied to medical imaging. In 2012 she got a Ph. D in Computational Biology from the School of Bioengineering of Rice University (Houston, TX, US), where she specialized in computational structural biology and functional genomics. Her doctoral thesis “Protein functional features extracted with from primary sequences : a focus on disordered regions”, contributed to a better understanding of the functional and evolutionary role of intrinsic disorder in protein plasticity, complexity and adaptation to stress conditions. As part of her Ph. D., Natalia was a visiting scholar in two labs in Madrid: the Structural Computational Biology Group at the Spanish National Cancer Research Centre (CNIO), where she mainly worked in sequence analysis and the functional-structural relationships of proteins, and the Computational Systems Biology Group at the Spanish National Centre for Biotechnology (CNB-CSIC ), where she studied the functional implications of intrinsically disordered proteins at the genomic level for several organisms, collaborating with different experimental and theoretical groups. In 2013, she joined the Swiss Institute of Bioinformatics as a postdoctoral fellow in the Bioinformactics Core Facility. Her main project consisted in the molecular classification of a rare type of lymphoma, which involved the integration of transcriptomic, clinical and mutational data for the identification of molecular markers for classification, diagnosis and prognosis. This work was performed in collaboration with the Pathology Institute at the University Hospital of Lausanne (CHUV). In November of 2015 Natalia joined the Hub Team @ Pasteur C3BI as a Senior Bioinformatician. Natalia is especially interested in the integrative analysis of different omics data, both at large-scale and for small datasets, and loves collaborating in interdisciplinary environments and having feedback from her fellow experimental colleagues. Currently, she’s coordinating several projects performing functional and pathway analysis at the genomic level. By grouping genes, proteins and other biological molecules into the pathways they are involved in, the complexity of the analyses is significantly reduced, while the explanatory power increases with respect to having a list of differentially expressed genes or proteins.


    Keywords
    AlgorithmicsData managementGenomicsImage analysisMachine learningModelingProteomicsSequence analysisStructural bioinformaticsTranscriptomicsDatabaseGenome analysisBiostatisticsScientific computingDatabases and ontologiesApplication of mathematics in sciencesData and text miningGeneticsGraphics and Image ProcessingBiosensors and biomarkersClinical researchCell biology and developmental biologyInteractomicsBioimage analysis
    Organisms

    Projects (25)

    Violaine SAINT-ANDRÉ

    Group : DETACHED - Detached : Labex milieu intérieur

    After graduating from Paris VI University with a PhD in Genetics on the “Role of histone protein post-translational modifications in splicing regulation” that I performed in the Epigenetic Regulation unit at the Institut Pasteur, I carried out two post-doctoral experiences. I first worked for three years as a postdoctoral associate of the Whitehead Institute for Biomedical Research/MIT in Cambridge (USA). My main project consisted in the integration of genomic and epigenomic data in order to predict the transcription factors that are potentially at the core of the regulation of the cell-type specific gene expression programs. I then joined the Institut Curie where I deepened my experience in multi-omics data analyses and integration to identify non-coding RNAs involved in cancer progression. I have recently joined the HUB-C3BI of the Institut Pasteur where I am performing high-throughput data integration to better understand biological complexity and contribute to precision medicine development.


    Keywords
    ATAC-seqChIP-seqEpigenomicsNon coding RNAPathway AnalysisRNA-seqSingle CellSystems BiologyTool DevelopmentTranscriptomicsData integrationGraph theory and analysisCell biology and developmental biology
    Organisms
    Human
    Projects (1)

    Najwa TAIB


    Najwa has been a postdoctoral fellow funded by the PTR project OM-Nega of the Institut Pasteur. Since January 2018 she has become the permanent bioinformatician of the group as part of the Hub team C3BI of the Institut Pasteur.


    Keywords
    GenomicsSequence analysisDatabaseGenome analysisEvolutionOrthology and paralogy analysis
    Organisms

    Projects (0)

      Stevenn VOLANT

      Group : SABER - Embedded : Perception and Memory | Biomics

      After a diploma of statistician engineer from the Ensai (Ecole Nationale de la Statistique et de l’Analyse de l’Information) and a Ph.D in applied mathematics in the Statistics & Genome lab (AgroParisTech), I worked as a developer for the XLSTAT software. I have implemented some statistical methods such as mixture models, log-linear regression, mood test, bayesian hierarchical modeling CBC/HB, … Then I worked as a head teacher in statistics for one year. I was recruited in the Bioinformatic and biostatistic hub of the C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology) in 2014, I am in charge of the statistical analysis and the development of R/R shiny pipelines.


      Keywords
      Machine learningStatistical inferenceTargeted metagenomicsBiostatisticsApplication of mathematics in sciencesStatistical experiment design
      Organisms

      Projects (25)

      Related projects (56)

      SNP based analysis of French Bordetella pertussis isolates: comparison of isolates producing all the vaccine antigens to isolates producing only some of them.

      Whooping cough is a vaccine-preventable disease due to Bordetella pertussis. Even if vaccination has allowed the control of the disease, isolates are still circulating and cyclic increases of incidence are observed every 3 to 5 years even in vaccinated countries. Most developed countries now use acellular vaccines containing 3 to 5 vaccine antigens (pertussis toxin (PT), filamentous hemagglutinin (FHA), pertactin (PRN) fimbrial proteins (FIM2/FIM3)) that have replaced whole cell vaccines. In regions vaccinating with acellular vaccines with a high coverage, isolates no more producing some vaccine antigens (mainly PRN) have been reported in the last years.   Bordetella pertussis reference genome has been fully annotated in 2003 by the Sanger Institute. Analysis and comparison of different B.pertussis genomic sequences showed that circulating B.pertussis isolates differ from vaccine and reference strains. Genome evolution is characterized by gene deletions, antigenic divergences, SNP accumulations…Recent genomic analysis gathering isolates from different countries showed that the worldwide B. pertussis population has evolved in the last 60 years,. Gene categories under selection were identified underlying that Bvg-activated genes and genes coding for surface-exposed proteins were important for adaptation. However these analyses concerned only overall vaccine antigen producing isolates.   The PTMMH Unit includes the National Center of reference for Bordetellosis. In the last years some particular B.pertussis French isolates no more producing PRN but also FHA or PT have been collected, analyzed and sequenced. We would like to further analyze these genomic data with a focus on the vaccine antigen deficient isolates through a SNP-based comparison of these isolates vs co-circulating isolates producing all vaccine antigens and vs a reference strain.



      Project status : Closed

      MicrocystOmics

      Les cyanobactéries sont des microorganismes qui prolifèrent dans de nombreux plans d’eau et perturbent leurs fonctionnements et leurs usages car elles sont capables de produire des toxines dangereuses pour la santé humaine et animale. Si la réglementation sanitaire est basée, pour l’instant, sur la surveillance d’une seule toxine, il est désormais connu que ces microorganismes sont capables d’en synthétiser un grand nombre qu’il conviendrait de mieux prendre en compte dans le futur. C’est pourquoi, dans le but de mieux connaître le potentiel toxique des cyanobactéries, ma thèse s'applique, par des études sur leur génome et par une approche de chimie, à caractériser les gènes impliqués dans la synthèse de ces métabolites ainsi que les métabolites produits par ces gènes, à déterminer sur des souches de culture et dans des échantillons naturels provenant de plans d’eau d’Ile de France quel est le potentiel de production de ces métabolites et à mieux comprendre les facteurs environnementaux qui favorisent cette production. Deux équipes de Paris (Pasteur et iEES) sont associées sur ce travail qui implique également des collaborations étrangères. S'il est désormais bien connu qu'une part importante du métabolisme des cyanobactéries qui sont des microorganismes photosynthétiques, est régulée en fonction des phases de lumière et d'obscurité, les connaissances disponibles sur la synthèse des métabolites secondaires sont en revanche beaucoup plus limitées. Ces métabolites ont pourtant un double intérêt puisque certains sont toxiques pour l'Homme alors que d'autres ont un intérêt pharmaceutique potentiel. Leur synthèse repose sur l'expression de clusters de gènes pouvant être de très grande taille (jusqu’à 100 kb par région).



      Project status : Closed

      Listeriomics - Development of a web platform for visualization and analysis of Listeria omics data

      Over the past three decades Listeria has become a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields including virulence-factor regulation, cell biology, and bacterial pathophysiology. More recently, the number of Listeria “omics” data produced has increased exponentially, not only in term of number, but also in term of heterogeneity of data. There are now more than 40 published Listeria genomes, around 400 different transcriptomics data and 10 proteomics studies available. The capacity to analyze these data through a systems biology approach and generate tools for biologists to analyze these data themselves is a challenge for bioinformaticians. To tackle these challenges we are developing a web-based platform named Listeriomics which integrates different type of tools for “omics” data manipulation, the two most important being: 1) a genome viewer for displaying gene expression array, tiling array, and RNASeq data along with proteomics and genomics data. 2) An expression atlas, which is a query based tool which connects every genomics elements (genes, smallRNAs, antisenseRNAs) to the most relevant “omics” data. Our platform integrates already all genomics, and transcriptomics data ever published on Listeria and will thus allow biologists to analyze dynamically all these data, and bioinformaticians to have a central database for network analysis. Finally, it has been used already several times in our laboratory for different types of studies, including transcriptomics analysis in different biological conditions, and whole genome analysis of Listeria proteins N-termini. This project is funded by an ANR Investissement d'avenir: BACNET  10-BINF-02-01



      Project status : Closed

      Mining the Plasmodium genome to identify novel blood stage antigens for use as malaria vaccine candidates

      Malaria remains a major problem in many tropical countries with Plasmodium falciparum accounting for up to 1 million deaths, primarily in infants and children residing in endemic areas of sub-Saharan Africa. P. vivax, the other important species for human malaria is geographically more widespread and causes 80-100 million cases of malaria each year. All the pathology related to malaria is attributed to the blood stage of the parasite life cycle during which Plasmodium merozoites invade and multiply within host erythrocytes. We are interested in understanding the process of RBC invasion by malaria parasites at the molecular level with the goal of blocking their interaction with antibodies to inhibit invasion and kill the parasite. The first generation of recombinant blood stage malaria vaccine candidates based on antigens such as the merozoite surface protein (MSP1) and apical merozoite antigen-1 (AMA01) have been tested in field trials and failed to provide any efficacy against P. falciparum malaria. There is thus an urgent need to identify novel parasite antigens that play a role in invasion and can serve as vaccine candidates that elicit strong antibody responses that block blood stage parasite growth. In this project, we propose to mine the P. falciparum and P. vivax genome databases using bio-informatic tools to identify potential, novel blood stage invasion related parasite antigens that can serve as potential candidates for blood stage malara vaccines. Criteria such as expression profile, presence of conserved domains in orthologs from related plasmodium species, limited polymorphisms in field isolates, interaction with other invasion related proteins and localization to apical organelles or merozoite surface will be used to interrogate P. falciparum and P. vivax genome sequence data and identify potential invasion related antigens that will be selected for validation as vaccine candidates for malaria.



      Project status : Pending

      Modeling mitochondrial metabolism dormant Cryptococcus neoformans

      Cryptococcus neoformans is a ubiquitous yeast present in the environment that is able to interact closely with numerous organisms including amoeba, paramecium or nematodes. The interaction with these organisms shaped its virulence with acquisition of infectious properties as a consequence especially in mammals . The ability to survive nutrient starvation, oxidative stress, desiccation, both in the environment and during infection, indicates a high level of physiological and metabolic plasticity of the yeast. In humans, after primary infection during childhood, the yeast is able to survive within the host for years before reactivation upon immunosuppression, leading to a life threatening  disseminated fungal infection. This phenomenon, called dormancy / quiescence is one of the main biological features of this fungus in relation with disease's pathogenesis. It is well known in bacteria (tuberculosis), parasites (Plasmodium, Toxoplasma). In C. neoformans, dormancy has only been demonstrated epidemiologically in our laboratory but not experimentally so far. We developed an assay where yeasts cells exhibiting characteristics of potentially dormant cells were generated. Indeed, dormant cells are characterized by a low metabolic activity sometimes undetectable under normal laboratory conditions, altered growth capacity, and the ability to resuscitate upon adequate stimulus. Dormant cells are known to have increased mitochondrial masse and activity justifying a screening strategy of a collection of KO mutants for mitochondrial proteins. In parallel the whole proteome, transcriptome and secretome will be obtain with the ambition to correlate these parameters. Our current project aims at exploring the metabolism of the dormant yeast to have a comprehensive picture of the pathways that are required for the maintenance of dormancy and fo exit from dormancy.  



      Project status : In Progress

      Identification of the mouse and/or rat orthologues of the human gene ANOS1, responsible for the X-chromosome-linked form of Kallmann syndrome



      Project status : In Progress

      Interactions and dynamics of fungal and bacterial microbiome in healthy people



      Project status : Awaiting Publication

      Identification of new or unexpected pathogens, including viruses, bacteria, fungi and parasites associated with acute or progressive diseases

      Microbial discovery remains a challenging task for which there are a lot of unmet medical and public health needs. Deep sequencing has profoundly modified this field, which can be summarized in two questions : i) which pathogens or association of pathogens are associated with diseases of unknown etiology and ii) among microbes infecting animal (including arthropod) reservoirs, which ones are able to infect large vertebrates, including humans. We are currently addressing these two questions and our current request comes with the willingness for Institut Pasteur to increase its contribution and visibility of this thematic, in particular in relation with hospitals and the Institut Pasteur International network (IPIN).  We expect to identify new microbes associated with human diseases, and this is expected to pave the way for basic research programs focusing on virulence mechanisms and host specificity, and will also lead to phylogenetic and epidemiological studies (frequency of host infection, mode of transmission etc...), as well as the development of improved diagnostic tests for human infections. Our objective is also to contribute to the efforts of Institut Pasteur in the field of infectious diseases, by building a pipeline, from sample to microbial identification, able to manage large cohorts of samples. This project is currently supported by the LABEX IBEID and the CITECH, and critically requires a bioIT support, justifying this application. Partners include different hospitals including Necker-Enfants malades University Hospital regarding patients with progressive disease, different IPIN laboratories, as well as INRA and CIRAD regarding animal/arthropod reservoirs.



      Project status : In Progress