Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Statistical inference

Related people (8)

Marie-Agnès DILLIES

Group : HEAD - Hub Core

I obtained an engineering degree in Biomedical engineering from Université de Technologie de Compiègne (UTC) in 1989, a master degree in Control of Complex Systems from UTC in 1990, a PhD in Control of Complex Systems from UTC in 1993, a University Degree in Human Genetics from The University of Rennes 1 in 2001 and a master degree in Functional Genomics from University Paris Diderot (Paris 7) in 2002. I worked as a statistician at the Transcriptome and Epigenome Platform from 2002 to 2017, where I was responsible for the statistical analyses of the data and had an important training activity (on the campus and outside). Since 2015 I have been co-head of the Bioinformatics and Biostatistics Hub within the Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI). I am co-director of the Pasteur course Introduction to Data Analysis and co-organiser of the sincellTE summer school (a school dedicated to single cell transcriptome and epigenome data analysis). I am also co-managing the StatOmique group which gathers more than 60 statisticians from France.

RNA-seqStatistical inferenceTranscriptomicsBiostatisticsApplication of mathematics in sciencesExploratory data analysisIllumina HiSeqStatistical experiment designSequencing

Projects (3)

Quentin GIAI

Group : - Hub Core



Projects (0)

    Emeline PERTHAME

    Group : Stats - Hub Core

    Since February 2017 Research engineer, Hub of Bioinformatics and Biostatistics of the C3BI, Institut Pasteur 2015-2017 Post doctoral position, team MISTIS, INRIA Grenoble Topic: Robust clustering and robust non linear regression in high dimension. Collaboration with Florence Forbes (INRIA). 2012-2015 PhD thesis in Statistics, Applied Mathematics Department of Agrocampus-Ouest, IRMAR UMR 6625 CNRS, Rennes Topic: Stability of variable selection in regression and classification issues for correlated data in high dimension. Supervisor: David Causeur (Agrocampus-Ouest, IRMAR). Education 2015 PhD thesis in Statistics, Applied Mathematics Department of Agrocampus-Ouest, IRMAR UMR 6625 CNRS, Rennes 2012 ISUP degree (Institut de Statistique de l’UPMC), Université Pierre et Marie Curie, Paris 2012 Master 2 of Statistics, Université Pierre et Marie Curie, Paris

    ClusteringModelingStatistical inferenceTranscriptomicsBiostatisticsExploratory data analysisDimensional reductionStatistical experiment designMultidimensional data analysis

    Projects (22)

    Hugo VARET

    Group : STATS - Detached : Metabolomics Core Facility

    Hugo Varet is a biostatistician engineer from the Ensai (Ecole Nationale de la Statistique et de l’Analyse de l’Information) and has been recruited in 2013 by the Transcriptome & Epigenome Platform of the Biomics Pole. Late 2014 he obtained a permanent position at the Bioinformatics & Biostatistics Hub and has been detached to the platform to continue the statistical analyses of RNA-Seq data and develop R pipelines and Shiny applications that help in this task. One of them is named SARTools and is available on GitHub: In December 2019 he left the Biomics Platform and joined the Bioinformatics & Biostatistics Hub as a core-member.

    MetabolomicsModelingSequence analysisStatistical inferenceTranscriptomicsBiostatisticsScientific computingApplication of mathematics in sciencesExploratory data analysisHigh Throughput ScreeningClinical research

    Projects (26)

    Stevenn VOLANT

    Group : Stats - Embedded : Perception and Memory | Biomics

    After a diploma of statistician engineer from the Ensai (Ecole Nationale de la Statistique et de l’Analyse de l’Information) and a Ph.D in applied mathematics in the Statistics & Genome lab (AgroParisTech), I worked as a developer for the XLSTAT software. I have implemented some statistical methods such as mixture models, log-linear regression, mood test, bayesian hierarchical modeling CBC/HB, … Then I worked as a head teacher in statistics for one year. I was recruited in the Bioinformatic and biostatistic hub of the C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology) in 2014, I am in charge of the statistical analysis and the development of R/R shiny pipelines.

    Machine learningStatistical inferenceTargeted metagenomicsBiostatisticsApplication of mathematics in sciencesStatistical experiment design

    Projects (31)

    Related projects (8)

    MOODel: Modeling Mood Disorders

    Mood disorders such as bipolar and major depressive illnesses are among the most severe psychiatric disorders. They have high prevalence and chronic course, and are associated with significant mental and somatic comorbidities and high personal and societal costs (lost productivity and increased medical expenses). Patients with bipolar disorder (BD), for example, exhibit a reduced lifespan compared with the general population, a finding that cannot only be explained by high suicide risk, reduced access to medical care and lifestyle factors. However, the pathophysiological mechanisms of BD are poorly understood, and patients often have incomplete treatment response. Advanced mathematical approaches such as machine learning techniques are increasingly being used to generate predictions based on complex data, and it has been successfully used to detect a number of clinical outcomes and to predict behaviours. In combination with mobile technologies (e.g. smartphones, wearables) to collect behavioural, physiological and environmental data, these big data predictive approaches may provide a much richer and deeper understanding of phenomenology and pathophysiological mechanisms of mood and bipolar disorders. By taking advantage of the high-standard bioinformatics expertise offered by the C3BI, this multidisciplinary, collaborative project aims to explore how clinical and biological factors, may contribute for better characterizing BD patients as well as to identify predictors of treatment response in BD. Our project also aims to explore how daily behavioural and physiological parameters may influence mood and behaviour in individuals at-risk or suffering from mood disorders.

    Project status : In Progress