Expertise

Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Transcriptomics

Related people (13)

Claudia CHICA


As a computational biologist I have been involved in various projects seeking to answer different biological questions. Those projects have allowed me to define my main research interest, namely the evolutionary study of the emergence, storage and modulation of information in biological systems assisted by computational methods. During my research career I have acquired extensive experience in the analysis of sequence data at the DNA and protein level. I’m trained both in NGS bioinformatic protocols (ChIP-seq, ATAC-seq, RNA-seq, genome assembly) and fine detail sequence analysis. Most importantly, I have gained proficiency in the use of the statistical models that are at the basis of the quantitative analysis of low and high throughput sequence data. Additionally, my experience as a lecturer and instructor has taught me that training researchers about the formal basis of bioinformatic methodologies is the key for a successful collaboration between wet and dry lab. Likewise, I have gained valuable skills by working within two international consortia (TARA Oceans project and TRANSNET): the ability to collaborate with multidisciplinary groups and to coordinate younger researchers.


Keywords
AlgorithmicsGenomicsSequence analysisTranscriptomicsGenome analysisGeneticsEvolutionInteractomics
Organisms

Projects (16)

Marie-Agnès DILLIES

Group : HEAD - Hub Core

I obtained an engineering degree in Biomedical engineering from Université de Technologie de Compiègne (UTC) in 1989, a master degree in Control of Complex Systems from UTC in 1990, a PhD in Control of Complex Systems from UTC in 1993, a University Degree in Human Genetics from The University of Rennes 1 in 2001 and a master degree in Functional Genomics from University Paris Diderot (Paris 7) in 2002. I worked as a statistician at the Transcriptome and Epigenome Platform from 2002 to 2017, where I was responsible for the statistical analyses of the data and had an important training activity (on the campus and outside). Since 2015 I have been co-head of the Bioinformatics and Biostatistics Hub within the Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI). I am co-director of the Pasteur course Introduction to Data Analysis and co-organiser of the sincellTE summer school (a school dedicated to single cell transcriptome and epigenome data analysis). I am also co-managing the StatOmique group which gathers more than 60 statisticians from France.


Keywords
RNA-seqStatistical inferenceTranscriptomicsBiostatisticsApplication of mathematics in sciencesExploratory data analysisIllumina HiSeqStatistical experiment designSequencing
Organisms

Projects (4)

Etienne KORNOBIS

Group : FUNGEN - Embedded : Epigenetic regulation

After a PhD in Biology in 2011 on population genetics and phylogeography on amazing little amphipods (Crangonyx, Crymostygius) at the University of Reykjavik (Iceland), I pursued my interest in Bioinformatics and Evolutionary Biology in various post-docs in Spain (MNCN Madrid, UB Barcelona). During this time, I investigated transcriptomic landscapes for various non-model species (groups Conus, Junco and Caecilians) using de novo assemblies and participated in the development of TRUFA, a web platform for de novo RNA-seq analysis. In July 2016, I integrated the Revive Consortium and the Epigenetic Regulation unit at Pasteur Institute, where my main focus were transcriptomic and epigenetic analyses on various thematics using short and long reads technologies, with a special interest in alternative splicing events detection. I joined the Bioinformatics and Biostatistics Hub in January 2018. My latest interests are long reads technologies, alternative splicing and achieving reproducibility in Bioinformatics using workflow managers, container technologies and literate programming.


Keywords
Data managementData VisualizationSequence analysisTranscriptomicsWeb developmentGenome analysisProgram developmentExploratory data analysisSofware development and engineeringGeneticsEvolutionRead mappingWorkflow and pipeline developmentPopulation geneticsMotifs and patterns detectionGrid and cloud computing
Organisms
HumanInsect or arthropodOther animalAnopheles gambiae (African malaria mosquito)Mouse
Projects (2)

Rachel LEGENDRE

Group : PLATEFORM - Detached : Biomics

Rachel Legendre is a bioinformatics engineer. She completed her master degree in apprenticeship for two years at INRA in Jouy-en-Josas in the Genetic Animal department. She was involved in a project aiming at the detection and the expression analysis of micro-RNA involved in an equine disease. In 2012, she joined the Genomic, Structure and Translation Team at Paris-Sud (Paris XI) university. She worked principally on Ribosome Profiling data analysis, a new technique that allows to identify the position of the ribosome on the mRNA at the nucleotide level. Since November 2015, she joined the Bioinformatics and Biostatistics HUB at Pasteur Institute and she’s detached to the Biomics Pole in C2RT, where she is in charge of the bioinformatics analyses for transcriptomics and epigenomics projects. She’s also involved in Long Reads (PacBio and Nanopore) developments with other bioinformaticians of Biomics Pole.


Keywords
AlgorithmicsChIP-seqEpigenomicsNon coding RNATranscriptomicsGenome analysisProgram developmentScientific computingSofware development and engineeringIllumina HiSeqRead mappingSequencingWorkflow and pipeline developmentChromatin accessibility assaysPac BioRibosome profiling
Organisms
BacteriaFungiParasiteHumanInsect or arthropodOther animal
Projects (10)

Blaise LI


I obtained a PhD in phylogeny in 2008 at the Muséum National d’Histoire Naturelle in Paris, then worked as a post-doc in Torino (Italy, 2009 – 2011) and Faro (Portugal, 2011 – 2013) where I worked on methodological aspects of phylogeny. In 2013, I have been hired as research engineer in bioinformatics at the Institut de Génétique Humaine in Montpellier where I wrote tools to analyse high-throughput sequencing data, especially small RNA-seq. This is also the kind of job I do now at Institut Pasteur, since 2016. I enjoy programming in python, I’m interested in evolutionary biology, and I find teaching the UNIX command-line a rewarding activity. My published work is available here: http://www.normalesup.org/~bli/useful.html


Keywords
GenomicsNon coding RNATranscriptomicsSofware development and engineeringGeneticsWorkflow and pipeline development
Organisms
Insect or arthropodOther animalDrosophila melanogaster (Fruit fly)C. elegans
Projects (4)

Christophe MALABAT

Group : HEAD - Hub Core

After a PhD in biochemistry of the rapeseed proteins, during which I developed my first automated scripts for handling data processing and analysis, I join Danone research facility center for developing multivariate models for the prediction of milk protein composition using infrared spectrometry.
As I was already developing my own informatics tools, I decided to join the course of informatic for biology of the Institut Pasteur in 2007. At the end of the course I was recruited by the Institute and integrate the unit of “génétique des interactions macromoléculaires” of Alain Jacquier. Within this group, I learn to handle sequencing data and I developed processing and analysis tools using python and R. I also create a genome browser and database system for storing, retrieving and visualizing microarray data. After 8 years within the Alain Jacquier’s lab, I join the Hub of bioinformatics and biostatistics as co-head of the team.


Keywords
ClusteringData managementSequence analysisTranscriptomicsWeb developmentDatabaseGenome analysisProgram developmentScientific computingExploratory data analysisData and text miningIllumina HiSeqRead mappingLIMSIllumina MiSeqHigh Throughput ScreeningMultidimensional data analysisWorkflow and pipeline developmentRibosome profilingMotifs and patterns detection
Organisms

Projects (9)

Emeline PERTHAME

Group : SABER - Hub Core

Since February 2017 Research engineer, Hub of Bioinformatics and Biostatistics of the C3BI, Institut Pasteur 2015-2017 Post doctoral position, team MISTIS, INRIA Grenoble Topic: Robust clustering and robust non linear regression in high dimension. Collaboration with Florence Forbes (INRIA). 2012-2015 PhD thesis in Statistics, Applied Mathematics Department of Agrocampus-Ouest, IRMAR UMR 6625 CNRS, Rennes Topic: Stability of variable selection in regression and classification issues for correlated data in high dimension. Supervisor: David Causeur (Agrocampus-Ouest, IRMAR). Education 2015 PhD thesis in Statistics, Applied Mathematics Department of Agrocampus-Ouest, IRMAR UMR 6625 CNRS, Rennes 2012 ISUP degree (Institut de Statistique de l’UPMC), Université Pierre et Marie Curie, Paris 2012 Master 2 of Statistics, Université Pierre et Marie Curie, Paris


Keywords
ClusteringModelingStatistical inferenceTranscriptomicsBiostatisticsExploratory data analysisDimensional reductionStatistical experiment designMultidimensional data analysis
Organisms

Projects (13)

Natalia PIETROSEMOLI

Group : FUNGEN - Hub Core

Dr. Natalia Pietrosemoli is an Engineer with a M. Sc. in Modeling and Simulation of Complex Realities from the International Center for Theoretical Physics, ICTP and the International School of Advanced Studies, SISSA (Triest, Italy). During her M. Sc. internships she mostly worked in modeling, optimization, combinatorics and information theory applied to medical imaging. In 2012 she got a Ph. D in Computational Biology from the School of Bioengineering of Rice University (Houston, TX, US), where she specialized in computational structural biology and functional genomics. Her doctoral thesis “Protein functional features extracted with from primary sequences : a focus on disordered regions”, contributed to a better understanding of the functional and evolutionary role of intrinsic disorder in protein plasticity, complexity and adaptation to stress conditions. As part of her Ph. D., Natalia was a visiting scholar in two labs in Madrid: the Structural Computational Biology Group at the Spanish National Cancer Research Centre (CNIO), where she mainly worked in sequence analysis and the functional-structural relationships of proteins, and the Computational Systems Biology Group at the Spanish National Centre for Biotechnology (CNB-CSIC ), where she studied the functional implications of intrinsically disordered proteins at the genomic level for several organisms, collaborating with different experimental and theoretical groups. In 2013, she joined the Swiss Institute of Bioinformatics as a postdoctoral fellow in the Bioinformactics Core Facility. Her main project consisted in the molecular classification of a rare type of lymphoma, which involved the integration of transcriptomic, clinical and mutational data for the identification of molecular markers for classification, diagnosis and prognosis. This work was performed in collaboration with the Pathology Institute at the University Hospital of Lausanne (CHUV). In November of 2015 Natalia joined the Hub Team @ Pasteur C3BI as a Senior Bioinformatician. Natalia is especially interested in the integrative analysis of different omics data, both at large-scale and for small datasets, and loves collaborating in interdisciplinary environments and having feedback from her fellow experimental colleagues. Currently, she’s coordinating several projects performing functional and pathway analysis at the genomic level. By grouping genes, proteins and other biological molecules into the pathways they are involved in, the complexity of the analyses is significantly reduced, while the explanatory power increases with respect to having a list of differentially expressed genes or proteins.


Keywords
AlgorithmicsData managementGenomicsImage analysisMachine learningModelingProteomicsSequence analysisStructural bioinformaticsTranscriptomicsDatabaseGenome analysisBiostatisticsScientific computingDatabases and ontologiesApplication of mathematics in sciencesData and text miningGeneticsGraphics and Image ProcessingBiosensors and biomarkersClinical researchCell biology and developmental biologyInteractomicsBioimage analysis
Organisms

Projects (24)

Violaine SAINT-ANDRÉ

Group : DETACHED - Detached : Labex milieu intérieur

After graduating from Paris VI University with a PhD in Genetics on the “Role of histone protein post-translational modifications in splicing regulation” that I performed in the Epigenetic Regulation unit at the Institut Pasteur, I carried out two post-doctoral experiences. I first worked for three years as a postdoctoral associate of the Whitehead Institute for Biomedical Research/MIT in Cambridge (USA). My main project consisted in the integration of genomic and epigenomic data in order to predict the transcription factors that are potentially at the core of the regulation of the cell-type specific gene expression programs. I then joined the Institut Curie where I deepened my experience in multi-omics data analyses and integration to identify non-coding RNAs involved in cancer progression. I have recently joined the HUB-C3BI of the Institut Pasteur where I am performing high-throughput data integration to better understand biological complexity and contribute to precision medicine development.


Keywords
ATAC-seqChIP-seqEpigenomicsNon coding RNAPathway AnalysisRNA-seqSingle CellSystems BiologyTool DevelopmentTranscriptomicsData integrationGraph theory and analysisCell biology and developmental biology
Organisms
Human
Projects (1)

Hugo VARET

Group : PLATEFORM - Detached : Biomics

Hugo Varet is a biostatistician engineer from the Ensai (Ecole Nationale de la Statistique et de l’Analyse de l’Information) and has been recruited by the hub of the C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology) to work at the Transcriptome & Epigenome Platform. He is in charge of the statistical analyses of the RNA-Seq data produced by the platform and develops R pipelines that help in this task. One of them is named SARTools and is available on GitHub: https://github.com/PF2-pasteur-fr/SARTools.


Keywords
ModelingSequence analysisStatistical inferenceTranscriptomicsBiostatisticsScientific computingApplication of mathematics in sciencesExploratory data analysisHigh Throughput ScreeningClinical research
Organisms

Projects (16)

Related projects (28)

MicrocystOmics

Les cyanobactéries sont des microorganismes qui prolifèrent dans de nombreux plans d’eau et perturbent leurs fonctionnements et leurs usages car elles sont capables de produire des toxines dangereuses pour la santé humaine et animale. Si la réglementation sanitaire est basée, pour l’instant, sur la surveillance d’une seule toxine, il est désormais connu que ces microorganismes sont capables d’en synthétiser un grand nombre qu’il conviendrait de mieux prendre en compte dans le futur. C’est pourquoi, dans le but de mieux connaître le potentiel toxique des cyanobactéries, ma thèse s'applique, par des études sur leur génome et par une approche de chimie, à caractériser les gènes impliqués dans la synthèse de ces métabolites ainsi que les métabolites produits par ces gènes, à déterminer sur des souches de culture et dans des échantillons naturels provenant de plans d’eau d’Ile de France quel est le potentiel de production de ces métabolites et à mieux comprendre les facteurs environnementaux qui favorisent cette production. Deux équipes de Paris (Pasteur et iEES) sont associées sur ce travail qui implique également des collaborations étrangères. S'il est désormais bien connu qu'une part importante du métabolisme des cyanobactéries qui sont des microorganismes photosynthétiques, est régulée en fonction des phases de lumière et d'obscurité, les connaissances disponibles sur la synthèse des métabolites secondaires sont en revanche beaucoup plus limitées. Ces métabolites ont pourtant un double intérêt puisque certains sont toxiques pour l'Homme alors que d'autres ont un intérêt pharmaceutique potentiel. Leur synthèse repose sur l'expression de clusters de gènes pouvant être de très grande taille (jusqu’à 100 kb par région).



Project status : Closed

Listeriomics - Development of a web platform for visualization and analysis of Listeria omics data

Over the past three decades Listeria has become a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields including virulence-factor regulation, cell biology, and bacterial pathophysiology. More recently, the number of Listeria “omics” data produced has increased exponentially, not only in term of number, but also in term of heterogeneity of data. There are now more than 40 published Listeria genomes, around 400 different transcriptomics data and 10 proteomics studies available. The capacity to analyze these data through a systems biology approach and generate tools for biologists to analyze these data themselves is a challenge for bioinformaticians. To tackle these challenges we are developing a web-based platform named Listeriomics which integrates different type of tools for “omics” data manipulation, the two most important being: 1) a genome viewer for displaying gene expression array, tiling array, and RNASeq data along with proteomics and genomics data. 2) An expression atlas, which is a query based tool which connects every genomics elements (genes, smallRNAs, antisenseRNAs) to the most relevant “omics” data. Our platform integrates already all genomics, and transcriptomics data ever published on Listeria and will thus allow biologists to analyze dynamically all these data, and bioinformaticians to have a central database for network analysis. Finally, it has been used already several times in our laboratory for different types of studies, including transcriptomics analysis in different biological conditions, and whole genome analysis of Listeria proteins N-termini. This project is funded by an ANR Investissement d'avenir: BACNET  10-BINF-02-01



Project status : Closed

Tac4, a new RNA helicase involved in translation control?

We are interested in the cytoplasmic quality control of gene expression and more especially into the behavior of aberrant peptides which could be generated from non-conform translation events. We are now investigating the role of a Saccharomyces cerevisiae RNA helicase protein that we named Tac4 (for Translation Associated Component 4). We showed that this protein is involved in translation. We demonstrated, by sucrose gradient and affinity purification that Tac4 interacts with the ribosome. A first UV cross-linking and cDNA analysis (CRAC) experiment clearly revealed that Tac4 interacts with the 18S rRNA of the 40S ribosomal subunit and we precisely defined the crosslink point. These preliminary results also suggested an enrichment of the 3’-end regions of mRNAs. This implies that Tac4 could not only interact with the small ribosomal subunit but also directly with mRNA. Tac4 is conserved through the evolution and its mammalian homologue is involved in initiation of translation. Therefore, we thought that Tac4 could be associated with the 5’-end rather than with the 3’-end. However, recent data showed that translation reinitiation into the 3’-UTR region may occurs when translation termination is affected. The factors and molecular mechanisms implicated in these events are not known. Altogether, our preliminary results suggest that Tac4 is an excellent candidate participating to the unwinding of RNA structure or to the release of some RNA-binding proteins into the 3’-end mRNA. We now would like to 1) confirm that Tac4 preferentially interacts with the 3’-end of mRNA, 2) determine whether Tac4 interacts with a region upstream the Stop codon or in the 3’-UTR of the mRNA, 3) determine whether Tac4 could also interact with other mRNA region, such as the 5'-UTR region, 4) identify the mRNA targets to determine whether Tac4 could have a general role in translation or could only be involved in tra



Project status : In Progress

Modeling mitochondrial metabolism dormant Cryptococcus neoformans

Cryptococcus neoformans is a ubiquitous yeast present in the environment that is able to interact closely with numerous organisms including amoeba, paramecium or nematodes. The interaction with these organisms shaped its virulence with acquisition of infectious properties as a consequence especially in mammals . The ability to survive nutrient starvation, oxidative stress, desiccation, both in the environment and during infection, indicates a high level of physiological and metabolic plasticity of the yeast. In humans, after primary infection during childhood, the yeast is able to survive within the host for years before reactivation upon immunosuppression, leading to a life threatening  disseminated fungal infection. This phenomenon, called dormancy / quiescence is one of the main biological features of this fungus in relation with disease's pathogenesis. It is well known in bacteria (tuberculosis), parasites (Plasmodium, Toxoplasma). In C. neoformans, dormancy has only been demonstrated epidemiologically in our laboratory but not experimentally so far. We developed an assay where yeasts cells exhibiting characteristics of potentially dormant cells were generated. Indeed, dormant cells are characterized by a low metabolic activity sometimes undetectable under normal laboratory conditions, altered growth capacity, and the ability to resuscitate upon adequate stimulus. Dormant cells are known to have increased mitochondrial masse and activity justifying a screening strategy of a collection of KO mutants for mitochondrial proteins. In parallel the whole proteome, transcriptome and secretome will be obtain with the ambition to correlate these parameters. Our current project aims at exploring the metabolism of the dormant yeast to have a comprehensive picture of the pathways that are required for the maintenance of dormancy and fo exit from dormancy.  



Project status : In Progress

Genotype to phenotype analysis of immune responses in chronic inflammatory diseases



Project status : In Progress