Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Mosquito

Related people (2)


Group : FUNGEN - Embedded : Epigenetic regulation

After a PhD in Biology in 2011 on population genetics and phylogeography on amazing little amphipods (Crangonyx, Crymostygius) at the University of Reykjavik (Iceland), I pursued my interest in Bioinformatics and Evolutionary Biology in various post-docs in Spain (MNCN Madrid, UB Barcelona). During this time, I investigated transcriptomic landscapes for various non-model species (groups Conus, Junco and Caecilians) using de novo assemblies and participated in the development of TRUFA, a web platform for de novo RNA-seq analysis. In July 2016, I integrated the Revive Consortium and the Epigenetic Regulation unit at Pasteur Institute, where my main focus were transcriptomic and epigenetic analyses on various thematics using short and long reads technologies, with a special interest in alternative splicing events detection. I joined the Bioinformatics and Biostatistics Hub in January 2018. My latest interests are long reads technologies, alternative splicing and achieving reproducibility in Bioinformatics using workflow managers, container technologies and literate programming.

Data managementData VisualizationSequence analysisTranscriptomicsWeb developmentGenome analysisProgram developmentExploratory data analysisSofware development and engineeringGeneticsEvolutionRead mappingWorkflow and pipeline developmentPopulation geneticsMotifs and patterns detectionGrid and cloud computing
HumanInsect or arthropodOther animalAnopheles gambiae (African malaria mosquito)Mouse
Projects (2)

Related projects (10)

The resurgence of a neglected disease, Yellow fever: from jungle to urban environments

Yellow fever virus (YFV), a Flavivirus transmitted by mosquitoes causes a severe hemorrhagic fever in humans. Despite the availability of a safe and effective vaccine (17D), YFV is still a public health problem in tropical Africa and South America. In the Americas, the massive campaign of mosquito control during the first half of the 20th century led to the eradication of Aedes aegypti from most American countries, and as a consequence, urban outbreaks of YF were no longer observed. However, the relaxation of vector control led to the reinfestation of urban areas by Ae. aegypti and the subsequent establishment of the Asian tiger mosquito Aedes albopictus. In Brazil, while human cases are sporadically detected in the Amazonian basin where sylvatic YFV strains circulate between non-human primates and arboreal canopy-dwelling mosquitoes (Haemagogus sp.), they are increasingly reported outside the jungle moving towards the Atlantic coast, the most populated area. In the absence of routine immunization programs, YF may come back in the American towns as it was in the past. The causes leading to the current YF resurgence are multifactorial. From a mosquito vector viewpoint, changes in vector densities, distribution, vector competence or vector as a site of selection for epidemic YFV strains, can be regarded as critical factors. Our project aims to address the contribution of the invasive mosquito Ae. albopictus as a missing link to allow a selvatic YF strain (1D) to become adapted for a transmission in urban areas by the human-biting mosquito, Ae. aegypti. It will be done through three specific objectives: (i) identify Ae. albopictus-adaptive mutations after serial cycling of the selvatic YFV-1D on Brazilian Ae. albopictus mosquitoes, (ii) evaluate their potential to be transmitted to a vertebrate host, and (iii) deepen the transmission of the experimentally selected viruses by field-collected mosquito populations.

Project status : Closed