Expertise

Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Mouse

Related people (2)

Etienne KORNOBIS

Group : GORE - Embedded : Epigenetic regulation

After a PhD in Biology in 2011 on population genetics and phylogeography on amazing little amphipods (Crangonyx, Crymostygius) at the University of Reykjavik (Iceland), I pursued my interest in Bioinformatics and Evolutionary Biology in various post-docs in Spain (MNCN Madrid, UB Barcelona). During this time, I investigated transcriptomic landscapes for various non-model species (groups Conus, Junco and Caecilians) using de novo assemblies and participated in the development of TRUFA, a web platform for de novo RNA-seq analysis. In July 2016, I integrated the Revive Consortium and the Epigenetic Regulation unit at Pasteur Institute, where my main focus were transcriptomic and epigenetic analyses on various thematics using short and long reads technologies, with a special interest in alternative splicing events detection. I joined the Bioinformatics and Biostatistics Hub in January 2018. My latest interests are long reads technologies, alternative splicing and achieving reproducibility in Bioinformatics using workflow managers, container technologies and literate programming.


Keywords
Data managementData VisualizationSequence analysisTranscriptomicsWeb developmentGenome analysisProgram developmentExploratory data analysisSofware development and engineeringGeneticsEvolutionRead mappingWorkflow and pipeline developmentPopulation geneticsMotifs and patterns detectionGrid and cloud computing
Organisms
HumanInsect or arthropodOther animalAnopheles gambiae (African malaria mosquito)Mouse
Projects (3)

Christophe MALABAT

Group : HEAD - Hub Core

After a PhD in biochemistry of the rapeseed proteins, during which I developed my first automated scripts for handling data processing and analysis, I join Danone research facility center for developing multivariate models for the prediction of milk protein composition using infrared spectrometry.
As I was already developing my own informatics tools, I decided to join the course of informatic for biology of the Institut Pasteur in 2007. At the end of the course I was recruited by the Institute and integrate the unit of “génétique des interactions macromoléculaires” of Alain Jacquier. Within this group, I learn to handle sequencing data and I developed processing and analysis tools using python and R. I also create a genome browser and database system for storing, retrieving and visualizing microarray data. After 8 years within the Alain Jacquier’s lab, I join the Hub of bioinformatics and biostatistics as co-head of the team.


Keywords
ClusteringData managementSequence analysisTranscriptomicsWeb developmentDatabaseGenome analysisProgram developmentScientific computingExploratory data analysisData and text miningIllumina HiSeqRead mappingLIMSIllumina MiSeqHigh Throughput ScreeningMultidimensional data analysisWorkflow and pipeline developmentRibosome profilingMotifs and patterns detection
Organisms

Projects (10)

Related projects (38)

Utilize mouse models to study infection by HIV-1

We previously showed that humanized immune system (HIS) mice generated in Balb/c Rag2-/-γc-/- SIRPNOD (BRGS) recipients are susceptible to HIV-1 infection (X4 and R5 isolates) and maintain circulating HIV-1 in the plasma, resulting in a dramatic depletion of human CD4+ T cells. We also characterized features of HIV physiopathology in this model. Human thymocyte subsets developing in the thymus of HIS mice appear phenotypically normal, but in the periphery the T cell repertoire is restricted compared with that of human peripheral blood T cells. This negatively impacts on the ability of HIS mice to generate antigen-specific human immune responses when mice are vaccinated with protein antigens or following infection with lymphotropic viruses such as HIV. One likely explanation for these functional deficiencies involves the fact that human T cells are selected intrathymically by mouse MHC molecules and that naïve T cells in peripheral lymphoid organs interact primarily with mouse DC (as human DC development in HIS mice is limited). As a first line of improvement, we recently generated a novel mouse model by crossing our BRGS mice with the HLA-A*02-HHD class I transgenic mice and the HLA-DRB1*15 class II transgenic mice, resulting in BRGS-A2DR2 mice. Following intra-hepatic injection of these mice with MHC-matched CD34+ stem cells we observed increased engraftment, with faster kinetics. Moreover BRGS-A2DR2 HIS mice have an increased T cell development leading to a more equilibrated B/T and CD4/CD8 phenotype. We showed that BRGS-A2DR2 HIS mice were able to sustain replication of HIV R5 virus as the BRGS hosts. Viremia was similar in a first phase and then lower in a second phase in BRGS-A2DR2 compared to BRGS HIS mice, which could be a consequence of a better quality of the immune response. However, the viremia reached a similar plateau in the last phase. We propose to study the impact of the immune res



Project status : Closed

Gene ontology analysis of RNAseq data from uninfected and Leishmania-infected mouse macrophages

Gene ontology analysis of RNAseq data from uninfected and Leishmania-infected mouse macrophages.  Scientific context During the course of cutaneous or visceral disease in humans or experimental animal models, the resolution of leishmanial infections or the control of parasite growth is dependent on appropriate innate and adaptive immune responses developed by the parasitized host. Leishmania largely evades and subverts these responses by its intracellular life style inside the mammalian host, where the parasites develop into amastigotes mainly within macrophages (BMDMs). We have focused our interest in the BMDM inflammasome and the way Leishmania amastigotes interfere or subvert BMDM inflammatory responses. Our recent data are in favor of an absence of stimulation, even a down-regulation of the inflammasome in BMDMs harboring replicating amastigotes at the gene and protein expression levels. To go further on this, we have performed RNAseq experiments on uninfected and infected BMDMs. This project was done at the “Transcriptome and Epigenome” platform and in close collaboration with the C3BI for normalization and statistical analysis procedures. Objective In the present proposal we will perform a deep analysis of the repartition of modulated genes between the different conditions using these RNAseq data. Using C3Bi expertise we will classify known functions of modulated genes into GO aspects i.e. molecular function, cellular component and biological process, visualize gene annotations and perform statistical analyses for the distribution of the annotated genes over the GO hierarchy for the different gene lists analyzed. Hopefully, these analyses will bring us a better understanding of the mechanisms underlying the subversion of BMDM functions in the innate and adaptive immune response to Leishmania infection which is a prerequisite to design novel anti-parasitic intervention strategies targeting the infected host cell rather than the parasite.



Project status : Closed

Identification of the mouse and/or rat orthologues of the human gene ANOS1, responsible for the X-chromosome-linked form of Kallmann syndrome



Project status : In Progress