Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Parasite

Related people (2)


Group : Stats - Hub Core

Initially trained in evolutionary and environmental sciences, I studied population genetics and micro-evolutionary processes in a number of postdoctoral research projects. I recently joined the C3BI-Hub at the Institut Pasteur, where I work on various aspects involving Biostatistics and the analysis of genetic data.

Association studiesGenomicsGenotypingBiostatisticsGeneticsEvolutionPopulation genetics
BacteriaParasiteHumanInsect or arthropodOther animal
Projects (23)


Group : GORE - Hub Core

Rachel Legendre is a bioinformatics engineer. She completed her master degree in apprenticeship for two years at INRA in Jouy-en-Josas in the Genetic Animal department. She was involved in a project aiming at the detection and the expression analysis of micro-RNA involved in an equine disease. In 2012, she joined the Genomic, Structure and Translation Team at Paris-Sud (Paris XI) university. She worked principally on Ribosome Profiling data analysis, a new technique that allows to identify the position of the ribosome on the mRNA at the nucleotide level. Since november 2015, she worked at Institut Pasteur. During 4 years, she was detached to the Biomics Platform, where she was in charge of the bioinformatics analyses for transcriptomics and epigenomics projects. She was also involved in Long Reads (PacBio and Nanopore) developments with other bioinformaticians of Biomics. Since november 2019, she has joined the Hub of Bioinformatics and Biostatistics, et more precisely the Genome Organization Regulation and Expression group.

AlgorithmicsChIP-seqEpigenomicsNon coding RNATranscriptomicsGenome analysisProgram developmentScientific computingSofware development and engineeringIllumina HiSeqRead mappingSequencingWorkflow and pipeline developmentChromatin accessibility assaysPac BioRibosome profiling
BacteriaFungiParasiteHumanInsect or arthropodOther animal
Projects (24)

Related projects (34)

Phylogenetic analysis of the Leishmania HSP70 protein family

Project status : Closed


Project status : Closed

Mise a disposition d'un(e) bioinformaticien(ne) du hub pour les analyses bioinformatiques du transcriptome et de l epigenome

La PF Transcriptome et Epigenome développe des projets de séquençage à haut débit (collaboration et service) avec des équipes du Campus. Ceux-ci couvrent l'ensemble des thématiques du campus ainsi qu'une large gamme d'organismes (des virus aux mammifères). La plate-forme exerce des activités de biologie humide (construction des librairies et séquençage) et de biologie sèche (analyse bioinformatiques et statistiques). La personne mise a disposition interagira étroitement avec les autres bioinformaticiens du pôle BioMics et du Hub. Ses activités concerneront notamment: - La participation à la conception et à la mise en place des projets avec les équipes demandeuses, la prise en charge des analyses et le reporting aux utilisateurs - La mise en place d'un workflow d'analyse bioinformatique des données de transcriptome /épigénome en étroite collaboration avec le C3BI, la DSI et les autres bioinformaticiens du pole. Ce workflow permettra le contrôle qualité des données, leur prétraitement, le mapping des séquences sur les génomes/transcriptomes de réference, et le comptage des reads pour les différents éléments de l'annotation - L'adaptation du workflow d'analyse aux questions biologiques et aux organismes étudiés dans le cadre des activités de la PF - L'activité de veille technologique et bibliographique (test et validation de nouveaux outils d'analyse, updates d'outils existants...) - La mise en place et le développement d'outils d'analyse adaptés aux futurs projets de la PF: single cell RNAseq, métatranscriptome, ChIPseq, analyse des isoformes de splicing.. Ceci se fera notamment via la réalisation d'analyses dédiées avec certains utilisateurs. Les outils mis en place et validés dans ce cadre seront ensuite utilisés pour l'ensemble des projets. - L'activité de communication et de formation (participation aux réunions du consortium France Génomique,formation permanente à l' Institut Pasteur… - la participation a d autres projets du Pole BioMics (selon disponibilité) Bernd Jagla, qui était le bioinformaticien de la plateforme a rejoint le Hub au 1er janvier 2016. Rachel Legendre est mise a disposition depuis le 2 novembre 2015 et remplace Bernd Jagla. Je souhaite que Rachel Legendre soit mise à disposition de la plateforme pour une durée d'au moins 2 ans.

Project status : Closed

Bio-informatics support for the LeiSHield project

BioHub LeiSHield project This proposal summarizes the contribution of the BioHub to the LeiSHield action that may be carried out by a single BioHub Leishmania coordinator (Giovanni Bussotti). The coordinator will be implicated in the following actions: 1) Establish the link between LeiSHield members and the BioHub team for all questions regarding data analysis and interpretation. The coordinator will present to the BioHub the bio-informatics needs of the LeiSHield partners. Short (easy) tasks will be answered directly (following the BioHub open door strategy). For more involved tasks i twill be asked to deposit projects via the C3BI web site. 2) Coordinate the setup of an HTseq analysis pipeline, including quality control, read mapping, determination of CNV and SNPs, and data visualization using a combination of tools available at the BioHub, such as SyntView and Listeriomics. A link to Cedric Notredame will be established as scripts for Leishmania have been created there. 3) Oversee the submission of DNA from the different LeiSHield WPs to the IP HTseq facility, follow the progress, store the acquired data, and dispatch the datasets to the corresponding WP leaders. This will be coordinate with the Biomix infrastrcuture. 4) Apply the HTseq analysis pipeline (see point 1) on selected data sets for defined work packages, including WP4 (“Analysis of newly isolated anthroponotic L. donovani s.l. strains from Cyprus and correlation of genotypic profiles to tropism and drug resistance”), WP6 (“Population genetics of Brazilian L. infantum isolates from endemic areas presenting distinct transmission cycle”), WP7 (“Leishmania dovovani genome sequence diversity and disease tropism in the Sudan”), and WP9 (“Systems-wide analysis of Leishmania genomic and transcriptomic adaptation”). 5) Co-organize a course on HTseq data visualization (June 2016) with members of the BioHub team.

Project status : Closed

Mining the Plasmodium genome to identify novel blood stage antigens for use as malaria vaccine candidates

Malaria remains a major problem in many tropical countries with Plasmodium falciparum accounting for up to 1 million deaths, primarily in infants and children residing in endemic areas of sub-Saharan Africa. P. vivax, the other important species for human malaria is geographically more widespread and causes 80-100 million cases of malaria each year. All the pathology related to malaria is attributed to the blood stage of the parasite life cycle during which Plasmodium merozoites invade and multiply within host erythrocytes. We are interested in understanding the process of RBC invasion by malaria parasites at the molecular level with the goal of blocking their interaction with antibodies to inhibit invasion and kill the parasite. The first generation of recombinant blood stage malaria vaccine candidates based on antigens such as the merozoite surface protein (MSP1) and apical merozoite antigen-1 (AMA01) have been tested in field trials and failed to provide any efficacy against P. falciparum malaria. There is thus an urgent need to identify novel parasite antigens that play a role in invasion and can serve as vaccine candidates that elicit strong antibody responses that block blood stage parasite growth. In this project, we propose to mine the P. falciparum and P. vivax genome databases using bio-informatic tools to identify potential, novel blood stage invasion related parasite antigens that can serve as potential candidates for blood stage malara vaccines. Criteria such as expression profile, presence of conserved domains in orthologs from related plasmodium species, limited polymorphisms in field isolates, interaction with other invasion related proteins and localization to apical organelles or merozoite surface will be used to interrogate P. falciparum and P. vivax genome sequence data and identify potential invasion related antigens that will be selected for validation as vaccine candidates for malaria.

Project status : Declined

Identification of new or unexpected pathogens, including viruses, bacteria, fungi and parasites associated with acute or progressive diseases

Microbial discovery remains a challenging task for which there are a lot of unmet medical and public health needs. Deep sequencing has profoundly modified this field, which can be summarized in two questions : i) which pathogens or association of pathogens are associated with diseases of unknown etiology and ii) among microbes infecting animal (including arthropod) reservoirs, which ones are able to infect large vertebrates, including humans. We are currently addressing these two questions and our current request comes with the willingness for Institut Pasteur to increase its contribution and visibility of this thematic, in particular in relation with hospitals and the Institut Pasteur International network (IPIN).  We expect to identify new microbes associated with human diseases, and this is expected to pave the way for basic research programs focusing on virulence mechanisms and host specificity, and will also lead to phylogenetic and epidemiological studies (frequency of host infection, mode of transmission etc...), as well as the development of improved diagnostic tests for human infections. Our objective is also to contribute to the efforts of Institut Pasteur in the field of infectious diseases, by building a pipeline, from sample to microbial identification, able to manage large cohorts of samples. This project is currently supported by the LABEX IBEID and the CITECH, and critically requires a bioIT support, justifying this application. Partners include different hospitals including Necker-Enfants malades University Hospital regarding patients with progressive disease, different IPIN laboratories, as well as INRA and CIRAD regarding animal/arthropod reservoirs.

Project status : In Progress

Gene ontology analysis of RNAseq data from uninfected and Leishmania-infected mouse macrophages

Gene ontology analysis of RNAseq data from uninfected and Leishmania-infected mouse macrophages.  Scientific context During the course of cutaneous or visceral disease in humans or experimental animal models, the resolution of leishmanial infections or the control of parasite growth is dependent on appropriate innate and adaptive immune responses developed by the parasitized host. Leishmania largely evades and subverts these responses by its intracellular life style inside the mammalian host, where the parasites develop into amastigotes mainly within macrophages (BMDMs). We have focused our interest in the BMDM inflammasome and the way Leishmania amastigotes interfere or subvert BMDM inflammatory responses. Our recent data are in favor of an absence of stimulation, even a down-regulation of the inflammasome in BMDMs harboring replicating amastigotes at the gene and protein expression levels. To go further on this, we have performed RNAseq experiments on uninfected and infected BMDMs. This project was done at the “Transcriptome and Epigenome” platform and in close collaboration with the C3BI for normalization and statistical analysis procedures. Objective In the present proposal we will perform a deep analysis of the repartition of modulated genes between the different conditions using these RNAseq data. Using C3Bi expertise we will classify known functions of modulated genes into GO aspects i.e. molecular function, cellular component and biological process, visualize gene annotations and perform statistical analyses for the distribution of the annotated genes over the GO hierarchy for the different gene lists analyzed. Hopefully, these analyses will bring us a better understanding of the mechanisms underlying the subversion of BMDM functions in the innate and adaptive immune response to Leishmania infection which is a prerequisite to design novel anti-parasitic intervention strategies targeting the infected host cell rather than the parasite.

Project status : Closed

Genomic determinants for initiation and length of natural antisense transcripts in a compact eukaryotic genome and phylogenetic analysis of related Entamoeba species

Project status : Closed

Antimalarial drug resistance in Africa: A comprehensive molecular analysis of the emergence of artemisinin resistant parasites in Africa

Project status : Closed


African trypanosomes are transmitted by the bite of the tsetse fly and cause the debilitating, and often fatal, neglected tropical disease sleeping sickness, or Human African Trypanosomiasis (HAT). Trypanosoma brucei gambiense, the parasites responsible for 98% of human cases, first reside in the patient blood and skin for months to years before invading the central nervous system, where they cause the neurological symptoms of the disease. HAT is approaching elimination, with the number of cases reported in 2017 dropping to approximately 1,442 from only a dozen African countries. In this context, HAT was included in the WHO roadmap on neglected tropical diseases, with 2020 set as target date for elimination as a public health problem. A secondary goal of zero transmission by 2030 has also been set. These targets have, in part, been encouraged by the success of surveillance efforts that rely on detecting extracellular trypanosomes in human blood. Nevertheless, the reduction in case numbers brings about other challenges. For example, the sensitivity of any diagnostic test diminishes as the disease burden drops, and this is being seen with the serological tests available for HAT. In this context, new highly sensitive and specific diagnostic tools will be required to accurately monitor the occurrence of new cases and the possible emergence of drug-resistant trypanosomes during the elimination phase. Most diagnostic tests currently under development are based on optimization of existing methods that may not combine all the requirements to stand up to the harsh constraints imposed by the elimination phase requirements, especially in terms of sensitivity and specificity. We propose that adapting the recently developed Specific High-sensitivity Enzymatic Reporter unLOCKing (SHERLOCK) technology that combines a CRISPR-Cas system and lateral flow test to trypanosomes will provide the sensitivity and specificity required for a diagnostic test in the elimination and post elimination phases. The SHERLOCK system relies on the collateral effect of Cas13a promiscuous RNA cleavage activity upon target recognition. Combining the collateral effect with pre-amplification of RNAs resulted in rapid RNA detection with attomolar (10^-18 moles/l) sensitivity and single-base mismatch specificity, in a diagnostic setting. This technology has been used to detect specific strains of Zika and Dengue viruses and distinguish pathogenic bacteria in a mixed sample. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications. A lateral flow test for a simple and rapid readout can be easily implemented after a reaction that does not exceed two hours from the sampling step. The first step of this project is to identify promising RNA targets in silico by data mining and multiple alignements of all available transcriptomic data on bloodstream African trypanosomes.

Project status : Closed

Plasmodium vivax Invasion Pathways into Human Reticulocytes - VIPers

Project status : Pending

A cost-effective molecular Tool for Strengthening Antimalarial drug Resistance surveillance in Africa (TSARA)

Project status : Closed

A cost-effective molecular Tool for Strengthening Antimalarial drug Resistance surveillance in Africa (TSARA)

Project status : In Progress

The LeiSHield-MATI consortium: Investigating genomic adaptation of Leishmania parasites in endemic areas

Leishmania causes devastating human diseases – leishmaniases - representing an important public health problem in the Mediterranean basin and declared as emerging diseases in the EU due to climate change and population displacement. The LeiSHield-MATI consortium will for the first time investigate in an integrative fashion the complex parasite-vector-host interplay in cutaneous leishmaniasis affecting Morocco, Algeria, Tunisia, and Iran (MATI), using field isolates and human clinical samples. The ultimate goal of our project is to identify genetic factors selected during natural infection and to understand how the complex parasite-vector-animal interaction impacts clinical outcome in infected patients. This goal will be achieved through a highly ambitious secondment plan between all partners, and the organization of courses and workshops to train the next generation of scientists generating a long-term impact on the research capacities in endemic areas. Capitalizing on complementary infrastructures of its EU, African and Asian partners and their expertise in molecular parasitology, epidemiology, systems level analyses, bioinformatics, computational biology, immunology, dermatology, field studies, and public health, our project will drive important innovation in clinical research, strengthen capacities in disease endemic regions, inform authorities on control measures, and raise awareness in all partner countries on this emerging EU public health problem. The highly inter-disciplinary and inter-sectorial structure of LeiSHield-MATI, and its powerful integrative and comparative approach is novel in parasitic systems and will drive a unique bio-marker discovery pipeline for the future development of new prognostic and diagnostic tools, as well as novel preventive and therapeutic measures that will ensure long-term collaboration, promote scientific and commercial self-sustainability of its partners, and will have an important impact to improve public health.

Project status : In Progress

Centrosome and basal body function in human parasites

Centrosomes are the main microtubule organizing center of eukaryotic cells with critical roles in cell division, polarity, signaling and structure. In most cells, one or both centrioles act as basal body (BB), nucleating microtubules to form cilia or flagella, sensory and motile organelles of vital importance for a wide range of biological functions. Notorious deadly diseases such as cancer, microcephaly and ciliopathies correlate with dysregulation in the number and/or structure of the centrosome/BB. Defects in centriolar proteins also impact cell division and flagellar function of parasitic protists. Notably, T. gondii can assemble flagella during its sexual cycle within the cat’s enteroepithelial tissue, a largely unattainable life stage in vitro. The state of the art of the field points at the centrosome and basal body of apicomplexan and trypanosomatid parasites as potentially rich sources of novel therapeutic targets to fight parasitic diseases. However, their molecular composition and the regulation of their biogenesis remain ill-described. Albeit a number of structural components appear to be conserved between parasitic protozoa and their vertebrate hosts, the absence of conserved homologs of regulatory components, suggests that their biogenesis is likely controlled by divergent triggers of unknown targets. Within the framework of a funded ACIP grant (076-2017), this team pursued the characterization of the centrosome composition in T. gondii, and explored the localization of newly identified principles in T. brucei. This proposal focuses on deciphering the role of the newly identified proteins in the biology of the centrosome in Toxoplasma gondii, as a model for the phylum apicomplexa, and to analyze the role of these conserved proteins in basal body biogenesis and function in Trypanosoma brucei. Based on our preliminary identification of novel centrosomal/basal body components and the powerful tools available in our model organisms, we now propose: 1. To analyze the phylogenetic distribution and functional domains of 20 novel proteins of T. gondii through bioinformatic approaches. 2. To assess the localization of these 20 proteins, and the function and cell cycle dynamics of those localized to the centrosome, in T. gondii. 3. To characterize the function of a protein complex linking the centrosome to nascent daughter cells in T. gondii. 4. To characterize the role of 3 novel T. brucei proteins homologs in basal body biology.

Project status : New