Expertise

Hub members Have many expertise, covering most of the fields in bioinformatics and biostatistics. You'll find below a non-exhaustive list of these expertise

Search by keywords | Search by organisms

Searched keyword : Saccharomyces

Related people (3)

Anđela DAVIDOVIĆ

Group : SINGLE - Embedded :

I have a joint MSc degree in Mathematical Modelling from three European universities: University of L’Aquila (Italy), University of Nice-Sophia Antipolis (France) and Autonomous University of Barcelona (Spain). I also hold a PhD degree in Applied Mathematics and Scientific Computing from University of Bordeaux, France. I have done my PhD and one year of post-doc at INRIA Bordeaux Sud-Ouest, and partially at IHU-Liryc. During this time I studied how electrical signals propagate through the cardiac tissue under certain diseased conditions. My model of interest was the bidomain model, which is a system of partial differential equations that takes into account physiological properties of the cardiac cells and the spatial organization of the cardiac tissue. I worked on the mathematical multiscale analysis and numerical simulations of the problem to understand how structural changes of the tissue affect the propagation of the signal on the heart level. I collaborated with biologists and engineers of the IHU-Liryc to apply my model on a rat heart using high-resolution MRI data. For this I also worked on image analysis and image processing. I’ve joined the Institute Pasteur in February 2018 as a member of the HUB in Bioinformatics and Biostatistics. Currently I am working on stochastic mathematical modeling and inference for systems biology, gene expression, RNA transcription, etc.


Keywords
ModelingScientific computingApplication of mathematics in sciencesGraphics and Image Processing
Organisms
BacteriaFungiInsect or arthropodEscherichia coliSaccharomyces cerevisiaeFly
Projects (2)

Varun KHANNA


2015 – . – Institut Pasteur, Paris, France – Unit : Bioinformatics and Biostatistics HUB 2012 – 2015 – Institut Pasteur, Paris, France – Unit : Molecular Genetics of Yeasts Supervisor : Prof. B. Dujon 2012 – Institut Pasteur, Paris, France – Unit : Integrated Mycobacterial Pathogenomics Supervisor: Dr. R. Brosch Education 2012– MSc. Bioinformatics – Université Paris Diderot (Paris VII)


Keywords
Genome assemblySequence analysisGenome analysisOrthology and paralogy analysisRead mappingSequence homology analysisDNA structure analysisGenome rearrangementsMotifs and patterns detection
Organisms
Saccharomyces cerevisiae
Projects (25)

Christophe MALABAT

Group : HEAD - Hub Core

After a PhD in biochemistry of the rapeseed proteins, during which I developed my first automated scripts for handling data processing and analysis, I join Danone research facility center for developing multivariate models for the prediction of milk protein composition using infrared spectrometry.
As I was already developing my own informatics tools, I decided to join the course of informatic for biology of the Institut Pasteur in 2007. At the end of the course I was recruited by the Institute and integrate the unit of “génétique des interactions macromoléculaires” of Alain Jacquier. Within this group, I learn to handle sequencing data and I developed processing and analysis tools using python and R. I also create a genome browser and database system for storing, retrieving and visualizing microarray data. After 8 years within the Alain Jacquier’s lab, I join the Hub of bioinformatics and biostatistics as co-head of the team.


Keywords
ClusteringData managementSequence analysisTranscriptomicsWeb developmentDatabaseGenome analysisProgram developmentScientific computingExploratory data analysisData and text miningIllumina HiSeqRead mappingLIMSIllumina MiSeqHigh Throughput ScreeningMultidimensional data analysisWorkflow and pipeline developmentRibosome profilingMotifs and patterns detection
Organisms

Projects (9)

Related projects (10)

Influence of chromatin dynamics on genomic stability during replication

Genomic DNA is hierarchically packed within the living cells and genome duplication requires the concerted effort of many thousands of individual replication units. As such, to ensure the integrity of transmission of the genetic information, both eukaryotes and prokaryotes have evolved sophisticated mechanisms to monitor DNA replication. Some of these mechanisms aim to maintain both a temporal and a spatial organization of the replication program, leading to multiple replication time regions and the compartmentalization into replication foci, subnuclear sites which accumulate numerous DNA replication factors. It should be noted that Saccharomyces cerevisiae represents an exception to the standard eukaryotic strategy for genome duplication. Similar to bacteria, S. cerevisiae possess well-defined replication origin sequences that can fire at a very efficient rate during S phase, leading to a very homogenous pattern of DNA replication. A common mo del suggests that, once replication starts dynamic events take place since co-regulated replication forks, having similar replication timing, cluster within a discrete number of foci that show distinct patterns of nuclear localization over the S-phase. Once initiated, the DNA synthesis might be compromised if the replication fork encounters an RFB (Replication Fork Barrier) such as DNA lesions, tightly bound protein-DNA complexes etc. The RFBs are considered a potential source of genetic instability and may lead to many chromosomal rearrangements. As a consequence, eukaryotes employ a complex DNA damage response against RFBs, which aims to maintain the stability of the stalled forks and provides the time required to repair and resume replication. Recent observations suggest that the non-random organization of the nucleus affects where repair occurs. The aim of this project is to reach a better understanding of the influence of the nuclear spatial architecture and organization at replication fork blocks.



Project status : Closed

Massive amplification at an unselected locus accompanies complex chromosomal rearrangements in yeast



Project status : Closed

Deciphering dormancy in Cryptocococcus neoformans



Project status : Awaiting Publication

Identification of Tac4 mRNA targets

We are interested in the cytoplasmic quality control of gene expression and more especially into the behavior of aberrant peptides which could be generated from non-conform translation events. We are now investigating the role of a Saccharomyces cerevisiae RNA helicase protein that we named Tac4 (for Translation associated Component 4). We showed that this protein is involved in translation. We demonstrated, by sucrose gradient and affinity purification that Tac4 interacts with the ribosome. A first UV cross-linking and cDNA analysis (CRAC) experiment clearly revealed that Tac4 interacts with the 18S rRNA of the 40S ribosomal subunit and we precisely defined the crosslink point. These preliminary results also suggested an enrichment of the 3’-end regions of mRNAs. This implies that Tac4 could not only interact with the small ribosomal subunit but also directly with mRNA. Tac4 is conserved through the evolution and its mammalian homologue is involved in initiation of translation. Therefore, we thought that Tac4 could be associated with the 5’-end rather than with the 3’-end. However, a recent paper from the Rachel Green’s lab showed that translation reinitiation into the 3’-UTR region may occurs when translation termination is affected (Young et al., Cell 2015). The factors and molecular mechanisms implicated in these events are not known. Altogether, our preliminary results suggest that Tac4 is an excellent candidate participating to the unwinding of RNA structure or to the release of some RNA-binding proteins into the 3’-end mRNA. We now would like to 1) confirm that Tac4 preferentially interacts with the 3’-end of mRNA, 2) determine whether Tac4 interacts with a region upstream the Stop codon or in the 3’-UTR of the mRNA, 3) identify the mRNA targets to determine whether Tac4 could have a general role in translation or could only be involved in translation of some specific mRNA.



Project status : In Progress

Tac4, a new RNA helicase involved in translation control?

We are interested in the cytoplasmic quality control of gene expression and more especially into the behavior of aberrant peptides which could be generated from non-conform translation events. We are now investigating the role of a Saccharomyces cerevisiae RNA helicase protein that we named Tac4 (for Translation Associated Component 4). We showed that this protein is involved in translation. We demonstrated, by sucrose gradient and affinity purification that Tac4 interacts with the ribosome. A first UV cross-linking and cDNA analysis (CRAC) experiment clearly revealed that Tac4 interacts with the 18S rRNA of the 40S ribosomal subunit and we precisely defined the crosslink point. These preliminary results also suggested an enrichment of the 3’-end regions of mRNAs. This implies that Tac4 could not only interact with the small ribosomal subunit but also directly with mRNA. Tac4 is conserved through the evolution and its mammalian homologue is involved in initiation of translation. Therefore, we thought that Tac4 could be associated with the 5’-end rather than with the 3’-end. However, recent data showed that translation reinitiation into the 3’-UTR region may occurs when translation termination is affected. The factors and molecular mechanisms implicated in these events are not known. Altogether, our preliminary results suggest that Tac4 is an excellent candidate participating to the unwinding of RNA structure or to the release of some RNA-binding proteins into the 3’-end mRNA. We now would like to 1) confirm that Tac4 preferentially interacts with the 3’-end of mRNA, 2) determine whether Tac4 interacts with a region upstream the Stop codon or in the 3’-UTR of the mRNA, 3) determine whether Tac4 could also interact with other mRNA region, such as the 5'-UTR region, 4) identify the mRNA targets to determine whether Tac4 could have a general role in translation or could only be involved in tra



Project status : In Progress