Project

Project #17537
Step by step one goes very far

Logged as guest


Go Back to Project List
#17537 : The LeiSHield-MATI consortium: Investigating genomic adaptation of Leishmania parasites in endemic areas
Topics :
Organisms :
Group :
Name of Applicant : Gerald Spaeth
Date of application : 19-09-2021
Unit : Molecular Parasitology and Signaling
Location : Calmette 2nd floor
Phone : 0786281484
@ Mail : gerald.spaeth@pasteur.fr

Project context and summary :

Leishmania causes devastating human diseases – leishmaniases - representing an important public health problem in the Mediterranean basin and declared as emerging diseases in the EU due to climate change and population displacement. The LeiSHield-MATI consortium will for the first time investigate in an integrative fashion the complex parasite-vector-host interplay in cutaneous leishmaniasis affecting Morocco, Algeria, Tunisia, and Iran (MATI), using field isolates and human clinical samples. The ultimate goal of our project is to identify genetic factors selected during natural infection and to understand how the complex parasite-vector-animal interaction impacts clinical outcome in infected patients. This goal will be achieved through a highly ambitious secondment plan between all partners, and the organization of courses and workshops to train the next generation of scientists generating a long-term impact on the research capacities in endemic areas. Capitalizing on complementary infrastructures of its EU, African and Asian partners and their expertise in molecular parasitology, epidemiology, systems level analyses, bioinformatics, computational biology, immunology, dermatology, field studies, and public health, our project will drive important innovation in clinical research, strengthen capacities in disease endemic regions, inform authorities on control measures, and raise awareness in all partner countries on this emerging EU public health problem. The highly inter-disciplinary and inter-sectorial structure of LeiSHield-MATI, and its powerful integrative and comparative approach is novel in parasitic systems and will drive a unique bio-marker discovery pipeline for the future development of new prognostic and diagnostic tools, as well as novel preventive and therapeutic measures that will ensure long-term collaboration, promote scientific and commercial self-sustainability of its partners, and will have an important impact to improve public health.


Related team publications :
1: Bussotti G, Benkahla A, Jeddi F, Souiaï O, Aoun K, Späth GF, Bouratbine A. Nuclear and mitochondrial genome sequencing of North-African Leishmania infantum isolates from cured and relapsed visceral leishmaniasis patients reveals variations correlating with geography and phenotype. Microb Genom. 2020 Oct;6(10):mgen000444. doi: 10.1099/mgen.0.000444. PMID: 32975503; PMCID: PMC7660250.
2: Bussotti G, Gouzelou E, Côrtes Boité M, Kherachi I, Harrat Z, Eddaikra N, Mottram JC, Antoniou M, Christodoulou V, Bali A, Guerfali FZ, Laouini D, Mukhtar M, Dumetz F, Dujardin JC, Smirlis D, Lechat P, Pescher P, El Hamouchi A, Lemrani M, Chicharro C, Llanes-Acevedo IP, Botana L, Cruz I, Moreno J, Jeddi F, Aoun K, Bouratbine A, Cupolillo E, Späth GF. Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. mBio. 2018 Nov 6;9(6):e01399-18. doi: 10.1128/mBio.01399-18. PMID: 30401775; PMCID: PMC6222132.
3: Prieto Barja P, Pescher P, Bussotti G, Dumetz F, Imamura H, Kedra D, Domagalska M, Chaumeau V, Himmelbauer H, Pages M, Sterkers Y, Dujardin JC, Notredame C, Späth GF. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol. 2017 Dec;1(12):1961-1969. doi: 10.1038/s41559-017-0361-x. Epub 2017 Nov 6. PMID: 29109466.
Service Delivery
Project Manager : blaise.li@pasteur.fr
Project Type : Medium
Status : In Progress


Go Back to Project List

Sorry. You must be logged in to view this form.