Project
Project #2436
Step by step one goes very far
Organisms :
Group : Name of Applicant : Marc LAVIGNE Date of application : 13-02-2015 Unit : Molecular Virology and Vaccinology Location : Lwoff, 4th Floor, room 404 Phone : 0145688903@ Mail : dmornico@pasteur.fr
Project context and summary :
HIV-1 replication requires the integration of the viral genome into the cell genome. A viral-encoded enzyme, integrase (IN), performs this critical step of infection and is a promising target for anti-viral therapeutics. If the catalytic properties of INs are well characterized, the mechanisms responsible for their site selectivity are still under investigation. Several cellular proteins, such as the LEDFGF/p75 transcription co-activator, the RNA polymerase II machinery, nuclear pore proteins and specific modified histones have been proposed to be involved in IN selectivity at a genomic level but the underlying molecular mechanisms remain to be demonstrated. In addition, structural parameters of the target DNA helix (curvature, flexibility, topology) are proposed to regulate IN selectivity at a local level. Our aims are to study the role of these different parameters of IN selectivity, using both in vitro and in vivo approaches. In vitro, we will map integration sites on various target DNA substrates (naked DNA or chromatin, minicircles, plasmids with different topologies, transcribed templates) and will test the effect of purified proteins suspected to regulate IN selectivity. In vivo, integration sites will be mapped in cells depleted of these suspected regulators or in cells incubated with drugs targeting enzymes involved in transcription, DNA topology or histone modifications. Integration sites will be mapped using published or “home-made” protocols and the sites will be compared with DNA structural parameters, nucleosome positions, histone modifications or transcriptional parameters (published maps). Bio-informatics tools are crucial for these correlative and statistical analyses of integration sites. Our project relies on complementary in vivo, in vitro and in silico approaches. It should establish molecular and mechanistic rules of HIV-1 integration selectivity that could serve in the development of new antiviral strategies and of safer gene therapy vectors.
Related team publications :